Title | Emotion prediction as computation over a generative theory of mind |
Publication Type | Journal Article |
Year of Publication | 2023 |
Authors | Houlihan, SDae, Kleiman-Weiner, M, Hewitt, LB, Tenenbaum, JB, Saxe, R |
Journal | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 381 |
Issue | 2251 |
Date Published | 07/2023 |
ISSN | 1364-503X |
Keywords | affective computing, emotion, inverse planning, probabilistic generative model, social intelligence, theory of mind |
Abstract | From sparse descriptions of events, observers can make systematic and nuanced predictions of what emotions the people involved will experience. We propose a formal model of emotion prediction in the context of a public high-stakes social dilemma. This model uses inverse planning to infer a person’s beliefs and preferences, including social preferences for equity and for maintaining a good reputation. The model then combines these inferred mental contents with the event to compute ‘appraisals’: whether the situation conformed to the expectations and fulfilled the preferences. We learn functions mapping computed appraisals to emotion labels, allowing the model to match human observers’ quantitative predictions of 20 emotions, including joy, relief, guilt and envy. Model comparison indicates that inferred monetary preferences are not sufficient to explain observers’ emotion predictions; inferred social preferences are factored into predictions for nearly every emotion. Human observers and the model both use minimal individualizing information to adjust predictions of how different people will respond to the same event. Thus, our framework integrates inverse planning, event appraisals and emotion concepts in a single computational model to reverse-engineer people’s intuitive theory of emotions. |
URL | https://royalsocietypublishing.org/doi/10.1098/rsta.2022.0047 |
DOI | 10.1098/rsta.2022.0047 |
Alternate Journal | Phil. Trans. R. Soc. A |
Associated Module:
Research Area:
CBMM Relationship:
- CBMM Funded