A Review of Relational Machine Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated Knowledge Graph Construction

TitleA Review of Relational Machine Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated Knowledge Graph Construction
Publication TypeCBMM Memos
Year of Publication2015
AuthorsNickel, M, Murphy, K, Tresp, V, Gabrilovich, E
Number028
Date Published03/2015
Publication LanguageEnglish
Abstract

Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two different kinds of statistical relational models, both of which can scale to massive datasets. The first is based on tensor factorization methods and related latent variable models. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. In particular, we discuss Google’s Knowledge Vault project.

arXiv

arXiv:1503.00759v3

DSpace@MIT

http://hdl.handle.net/1721.1/100193

Download: 

CBMM Memo No: 

028

Research Area: 

CBMM Relationship: 

  • CBMM Funded