Publication
Export 157 results:
Filters: Author is Tomaso A. Poggio [Clear All Filters]
Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).
Invariant recognition drives neural representations of action sequences. PLoS Comp. Bio (2017).
Invariant recognition drives neural representations of action sequences. PLOS Computational Biology 13, e1005859 (2017).
journal.pcbi_.1005859.pdf (9.24 MB)

Computational and Cognitive Neuroscience of Vision 85-104 (Springer, 2017).
Musings on Deep Learning: Properties of SGD. (2017).
CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)
CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)
CBMM Memo 067 v4 (revised 12/26/2017) (5.57 MB)



Object-Oriented Deep Learning. (2017).
CBMM-Memo-070.pdf (963.54 KB)

Pruning Convolutional Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1707.05455>
1707.05455.pdf (143.46 KB)

Representation Learning from Orbit Sets for One-shot Classification. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15357>
Symmetry Regularization. (2017).
CBMM-Memo-063.pdf (6.1 MB)

Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).
CBMM Memo 066_1703.09833v2.pdf (5.56 MB)

Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).
CBMM-Memo-072.pdf (3.66 MB)

Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).
CBMM-Memo-073.pdf (2.65 MB)
CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)
CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)
CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)




View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation. Current Biology 27, 1-6 (2017).
When and Why Are Deep Networks Better Than Shallow Ones?. AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence (2017).
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2
art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)

Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex. (2016).
CBMM Memo No. 047 (1.29 MB)

Deep Leaning: Mathematics and Neuroscience. A Sponsored Supplement to Science Brain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9-12 (2016).
Deep Learning: mathematics and neuroscience. (2016).
Deep Learning- mathematics and neuroscience.pdf (1.25 MB)

Deep vs. shallow networks : An approximation theory perspective. (2016).
Original submission, visit the link above for the updated version (960.27 KB)

Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications 14, 829 - 848 (2016).
Fast, invariant representation for human action in the visual system. (2016). at <http://arxiv.org/abs/1601.01358>
CBMM Memo 042 (3.03 MB)

Foveation-based Mechanisms Alleviate Adversarial Examples. (2016).
cbmm_memo_044.pdf (11.48 MB)

Group Invariant Deep Representations for Image Instance Retrieval. (2016).
CBMM-Memo-043.pdf (2.66 MB)

Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).
1510.04935v2.pdf (360.65 KB)
