Publication

Found 230 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is L  [Clear All Filters]
2018
Wang, Y. - S., Liu, C., Zeng, X. & Yuille, A. Scene Graph Parsing as Dependency Parsing. (2018).PDF icon CBMM-Memo-082.pdf (869 KB)
Lewis, O. Structured learning and inference with neural networks and generative models. (2018).
Poggio, T. & Liao, Q. Theory I: Deep networks and the curse of dimensionality. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 02_761-774_00966_Bpast.No_.66-6_28.12.18_K1.pdf (1.18 MB)
Poggio, T. & Liao, Q. Theory II: Deep learning and optimization. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 03_775-788_00920_Bpast.No_.66-6_31.12.18_K2.pdf (5.43 MB)
Banburski, A. et al. Theory III: Dynamics and Generalization in Deep Networks. (2018).PDF icon Original, intermediate versions are available under request (2.67 MB)PDF icon CBMM Memo 90 v12.pdf (4.74 MB)PDF icon Theory_III_ver44.pdf Update Hessian (4.12 MB)PDF icon Theory_III_ver48 (Updated discussion of convergence to max margin) (2.56 MB)PDF icon fixing errors and sharpening some proofs (2.45 MB)
Tacchetti, A., Voinea, S. & Evangelopoulos, G. Trading robust representations for sample complexity through self-supervised visual experience. Advances in Neural Information Processing Systems 31 (Bengio, S. et al.) 9640–9650 (Curran Associates, Inc., 2018). at <http://papers.nips.cc/paper/8170-trading-robust-representations-for-sample-complexity-through-self-supervised-visual-experience.pdf>PDF icon trading-robust-representations-for-sample-complexity-through-self-supervised-visual-experience.pdf (3.32 MB)PDF icon NeurIPS2018_Poster.pdf (6.12 MB)
Zhang, M., Feng, J., Lim, J. Hwee, Zhao, Q. & Kreiman, G. What am I searching for?. (2018).PDF icon CBMM-Memo-096.pdf (1.74 MB)
2017
A del Molino, G., Boix, X., Lim, J. & Tan, A. Active Video Summarization: Customized Summaries via On-line Interaction. AAAI Conference on Artificial Intelligence (2017).PDF icon 21-Garcia-del-Molino-14856.pdf (413.77 KB)
Liu, C., Mao, J., Sha, F. & Yuille, A. Attention Correctness in Neural Image Captioning. AAAI 2017 (2017).PDF icon 1605.09553.pdf (2.22 MB)
Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behavioral and Brain Sciences 40, e253 (2017).
Bramley, N., Mayrhofer, R., Gerstenberg, T. & Lagnado, D. A. Causal learning from interventions and dynamics in continuous time. Cognitive Science Conference (2017).PDF icon Bramley et al. - 2017 - Causal learning from interventions and dynamics in.pdf (1.78 MB)
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Lotter, W., Kreiman, G. & Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. ICLR (2017).PDF icon 1605.08104.pdf (2.9 MB)
Lotter, W., Kreiman, G. & Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. (2017).PDF icon CBMM-Memo-064.pdf (3 MB)
Meyers, E., Liang, A., Katsuki, F. & Constantinidis, C. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex (2017). doi:10.1093/cercor/bhx243
Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. Eye-Tracking Causality. Psychological Science 73, (2017).
Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. Eye-Tracking Causality. Psychological Science (2017).PDF icon eye_tracking_causality.pdf (8.04 MB)
Liang, T., Poggio, T., Rakhlin, A. & Stokes, J. Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. arXiv.org (2017). at <https://arxiv.org/abs/1711.01530>PDF icon 1711.01530.pdf (966.99 KB)
Zhang, Z. et al. Generative modeling of audible shapes for object perception. The IEEE International Conference on Computer Vision (ICCV) (2017). at <http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Generative_Modeling_of_ICCV_2017_paper.html>
Leonard, J. A., Lee, Y. & Schulz, L. Infants make more attempts to achieve a goal when they see adults persist. Science 357, 1290 - 1294 (2017).
Leonard, J. A., Lee, Y. & Schulz, L. Infants make more attempts to achieve a goal when they see adults persist. Science 357, 1290 - 1294 (2017).
Mutch, J. et al. Computational and Cognitive Neuroscience of Vision 85-104 (Springer, 2017).
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)

Pages