Publication

Found 93 results
Author Title Type [ Year(Desc)]
Filters: Author is Gabriel Kreiman  [Clear All Filters]
2016
Tang, H. et al. A machine learning approach to predict episodic memory formation. 2016 Annual Conference on Information Science and Systems (CISS) 539 - 544 (2016). doi:10.1109/CISS.2016.7460560
Kreiman, G. Neural Information Processing Systems (NIPS) 2015 Review. (2016).PDF icon Read the Views & Review article by Gabriel Kreiman (443.87 KB)
Tang, H. et al. Predicting episodic memory formation for movie events. Scientific Reports (2016). doi:10.1038/srep30175
Tang, H. et al. Predicting episodic memory formation for movie events [code]. (2016).
Tang, H. et al. Predicting episodic memory formation for movie events [dataset]. (2016).
Lotter, W., Kreiman, G. & Cox, D. PredNet - "Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning" [code]. (2016).
Miconi, T., Groomes, L. & Kreiman, G. There’s Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task [dataset]. (2016).
Miconi, T., Groomes, L. & Kreiman, G. There’s Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task [code]. (2016).
Miconi, T., Groomes, L. & Kreiman, G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cerebral Cortex 26(7), 26:3064-3082 (2016).
Lotter, W., Kreiman, G. & Cox, D. Unsupervised Learning of Visual Structure using Predictive Generative Networks. International Conference on Learning Representations (ICLR) (2016). at <http://arxiv.org/pdf/1511.06380v2.pdf>
2018
Palepu, A. & Kreiman, G. Development of automated interictal spike detector. 40th International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2018 (2018). at <https://embc.embs.org/2018/>
Zhang, M. et al. Finding any Waldo with zero-shot invariant and efficient visual search. Nature Communications 9, (2018).
Eric, W., Kevin, W. & Kreiman, G. Learning scene gist with convolutional neural networks to improve object recognition. 2018 52nd Annual Conference on Information Sciences and Systems (CISS) (2018). doi:10.1109/CISS.2018.8362305PDF icon 08362305.pdf (3.17 MB)
Wu, K., Wu, E. & Kreiman, G. Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. arXiv | Cornell University arXiv:1803.01967, (2018).
Misra, P., Marconi, A., Peterson, M. F. & Kreiman, G. Minimal memory for details in real life events. Scientific Reports 8, (2018).
Madhavan, R. et al. Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex 1–17, (2018).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future videoframes mimics critical properties of biologicalneuronal responses and perception. ( arXiv | Cornell University, 2018). at <https://arxiv.org/pdf/1805.10734.pdf>PDF icon 1805.10734.pdf (9.59 MB)
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Spatiotemporal interpretation features in the recognition of dynamic images. (2018).PDF icon CBMM-Memo-094.pdf (1.21 MB)Package icon CBMM-Memo-094-dynamic-figures.zip (1.8 MB)File fig1.ppsx (147.67 KB)File fig2.ppsx (419.72 KB)File fig4.ppsx (673.41 KB)File figS1.ppsx (587.88 KB)File figS2.ppsx (281.56 KB)

Pages