Export 898 results:
Eric, W., Kevin, W. & Kreiman, G. Learning scene gist with convolutional neural networks to improve object recognition. 2018 52nd Annual Conference on Information Sciences and Systems (CISS) (2018). doi:10.1109/CISS.2018.8362305PDF icon 08362305.pdf (3.17 MB)
Wu, K., Wu, E. & Kreiman, G. Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition. arXiv | Cornell University arXiv:1803.01967, (2018).
Gerstenberg, T. et al. Lucky or clever? From changed expectations to attributions of responsibility. Cognition (2018).
Isik, L. & Tacchetti, A. MEG action recognition data. (2018). doi:
Kool, W. & Botvinick, M. Mental labour. Nature Human Behaviour 2, 899 - 908 (2018).
Misra, P., Marconi, A., Peterson, M. F. & Kreiman, G. Minimal memory for details in real life events. Scientific Reports 8, (2018).
McCoy, J. P. & Ullman, T. D. A Minimal Turing Test. Journal of Experimental Social Psychology 79, 1 - 8 (2018).
Katz, B., Borchardt, G., Felshin, S. & Mora, F. The Wiley Handbook of Human Computer Interaction 2, 539-559 (John Wiley & Sons , 2018).
Madhavan, R. et al. Neural Interactions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex 1–17, (2018).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future videoframes mimics critical properties of biologicalneuronal responses and perception. ( arXiv | Cornell University, 2018). at <>PDF icon 1805.10734.pdf (9.59 MB)
Myanganbayar, B. et al. Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation. (2018).PDF icon CBMM-Memo-097.pdf (8.53 MB)
Myanganbayar, B. et al. Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation. The 14th Asian Conference on Computer Vision (ACCV 2018) (2018). at <>PDF icon partially-occluded-hands-6.pdf (8.29 MB)
Kool, W., Gershman, S. J. & Cushman, F. A. Planning Complexity Registers as a Cost in Metacontrol. Journal of Cognitive Neuroscience 30, 1391 - 1404 (2018).
Wu, Y., Baker, C., Tenenbaum, J. B. & Schulz, L. Rational inference of beliefs and desires from emotional expressions. Cognitive Science 42, (2018).PDF icon Wu_Baker_Tenenbaum_Schulz_in_press_cognitive_science.pdf (1.65 MB)
Hu, S. et al. Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes. Cell Reports 25, 2635 - 2642.e5 (2018).
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Liu, C. et al. Recurrent Multimodal Interaction for Referring Image Segmentation. (2018).PDF icon CBMM-Memo-079.pdf (10.16 MB)
Hamrick, J. B. et al. Relational inductive bias for physical construction in humans and machines. In Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci 2018) (2018).PDF icon 1806.01203.pdf (1022.51 KB)
Wang, Y. - S., Liu, C., Zeng, X. & Yuille, A. Scene Graph Parsing as Dependency Parsing. (2018).PDF icon CBMM-Memo-082.pdf (869 KB)
Owaki, T. et al. Searching for visual features that explain response variance of face neurons in inferior temporal cortex. PLOS ONE 13, e0201192 (2018).
Adhya, D. et al. Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. BioRxiv (2018). doi:10.1101/349415
Arend, L. et al. Single units in a deep neural network functionally correspond with neurons in the brain: preliminary results. (2018).PDF icon CBMM-Memo-093.pdf (2.99 MB)
Zhang, Z. et al. Single-Shot Object Detection with Enriched Semantics. Conference on Computer Vision and Pattern Recognition (CVPR) (2018). at <>
Zhang, Z. et al. Single-Shot Object Detection with Enriched Semantics. (2018).PDF icon CBMM-Memo-084.pdf (1.92 MB)
Ben-Yosef, G., Kreiman, G. & Ullman, S. Spatiotemporal interpretation features in the recognition of dynamic images. (2018).PDF icon CBMM-Memo-094.pdf (1.21 MB)Package icon (1.8 MB)File fig1.ppsx (147.67 KB)File fig2.ppsx (419.72 KB)File fig4.ppsx (673.41 KB)File figS1.ppsx (587.88 KB)File figS2.ppsx (281.56 KB)