Publication

Found 910 results
Author Title Type [ Year(Desc)]
2020
Schrimpf, M., Sato, F., Sanghavi, S. & DiCarlo, J. J. Temporal information for action recognition only needs to be integrated at a choice level in neural networks and primates . COSYNE (2020).
Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117PDF icon PNASlast.pdf (915.3 KB)
Dasgupta, I., Schulz, E., Tenenbaum, J. B. & Gershman, S. J. A theory of learning to infer. Psychological Review 127, 412 - 441 (2020).
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <http://www.threedworld.org/>
McPherson, M. J. & McDermott, J. H. Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory. Proceedings of the National Academy of Sciences 117, 32169 - 32180 (2020).
Eisape, T., Levy, R., Tenenbaum, J. B. & Zaslavsky, N. Toward human-like object naming in artificial neural systems . International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop (2020).
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Using task-optimized neural networks to understand why brains have specialized processing for faces . Computational and Systems Neurosciences (2020).
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <https://baicsworkshop.github.io/pdf/BAICS_1.pdf>PDF icon Authors' final version (516.09 KB)
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks . Conference on Cognitive Computational Neuroscience (2020).
Xiao, W. & Kreiman, G. XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLOS Computational Biology 16, e1007973 (2020).PDF icon gk7791.pdf (2.39 MB)
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Zhang, M. & Kreiman, G. Beauty is in the eye of the machine. Nature Human Behaviour 5, 675 - 676 (2021).
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
Traer, J., Norman-Haignere, S. & McDermott, J. H. Causal inference in environmental sound recognition. Cognition (2021). doi:10.1016/j.cognition.2021.104627
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Kar, K., Schrimpf, M., Schmidt, K. & DiCarlo, J. J. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision 21, (2021).
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Baidya, A., Dapello, J., DiCarlo, J. J. & Marques, T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/ScheduleMultitrack?event=41268>
Hu, J., Zaslavsky, N. & Levy, R. Competition from novel features drives scalar inferences in reference games. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional Networks Enable Systematic Generalization for Grounded Language Understanding. (2021).PDF icon CBMM-Memo-129.pdf (1.2 MB)
Kuo, Y. - L., Barbu, A. & Katz, B. Compositional RL Agents That Follow Language Commands in Temporal Logic. (2021).PDF icon CBMM-Memo-127.pdf (2.12 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional RL Agents That Follow Language Commands in Temporal Logic. Frontiers in Robotics and AI 8, (2021).PDF icon frobt-08-689550.pdf (1.57 MB)
N. Murty, A. Ratan, Bashivan, P., Abate, A., DiCarlo, J. J. & Kanwisher, N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications 12, (2021).PDF icon s41467-021-25409-6.pdf (6.47 MB)
Xiang, Y., Graeber, T., Enke, B. & Gershman, S. J. Confidence and central tendency in perceptual judgment. Attention, Perception, & Psychophysics 83, 3024 - 3034 (2021).

Pages