Publication
Export 31 results:
Filters: Author is James J. DiCarlo [Clear All Filters]
An empirical assay of view-invariant object learning in humans and comparison with baseline image-computable models. bioRxiv (2023). at <https://www.biorxiv.org/content/10.1101/2022.12.31.522402v1>
Adversarially trained neural representations may already be as robust as corresponding biological neural representations. arXiv (2022).
Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision 21, (2021).
Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/ScheduleMultitrack?event=41268>
Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications 12, (2021). s41467-021-25409-6.pdf (6.47 MB)
Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron (2020). doi:10.1016/j.neuron.2020.09.035 PIIS0896627320307595.pdf (3.92 MB)
Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications 11, (2020). s41467-020-17714-3.pdf (25.01 MB)
Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron 108, 413 - 423 (2020).
Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://proceedings.neurips.cc/paper/2020/hash/98b17f068d5d9b7668e19fb8ae470841-Abstract.html>
Temporal information for action recognition only needs to be integrated at a choice level in neural networks and primates . COSYNE (2020).
ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954> 2007.04954.pdf (7.06 MB)
Are topographic deep convolutional neural networks better models of the ventral visual stream?. Conference on Cognitive Computational Neuroscience (2019).
Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). 2019-10-28 NeurIPS-camera_ready.pdf (1.88 MB)
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience (2019). doi:10.1038/s41593-019-0392-5 Author's last draft (1.74 MB)
Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . Society for Neuroscience (2019).