Publication
Learning manifolds with k-means and k-flats. Advances in Neural Information Processing Systems 25 (NIPS 2012) (2012). at <https://papers.nips.cc/paper/2012/hash/b20bb95ab626d93fd976af958fbc61ba-Abstract.html>
Empirical Inference 59 - 69 (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-41136-610.1007/978-3-642-41136-6_7
Author's Version (147.25 KB)

A Deep Representation for Invariance And Music Classification. (2014).
CBMM-Memo-002.pdf (1.63 MB)

A Deep Representation for Invariance and Music Classification. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014). doi:10.1109/ICASSP.2014.6854954
Learning An Invariant Speech Representation. (2014).
CBMM-Memo-022-1406.3884v1.pdf (1.81 MB)

Phone Classification by a Hierarchy of Invariant Representation Layers. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <http://www.isca-speech.org/archive/interspeech_2014/i14_2346.html>
Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning?. (2014).
CBMM Memo No. 001 (940.36 KB)

Word-level Invariant Representations From Acoustic Waveforms. INTERSPEECH 2014 - 15th Annual Conf. of the International Speech Communication Association (International Speech Communication Association (ISCA), 2014). at <http://www.isca-speech.org/archive/interspeech_2014/i14_2385.html>
Deep Convolutional Networks are Hierarchical Kernel Machines. (2015).
CBMM Memo 035_rev5.pdf (975.65 KB)

Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Holographic Embeddings of Knowledge Graphs. (2015).
holographic-embeddings.pdf (677.87 KB)

On Invariance and Selectivity in Representation Learning. (2015).
CBMM Memo No. 029 (812.07 KB)

I-theory on depth vs width: hierarchical function composition. (2015).
cbmm_memo_041.pdf (1.18 MB)

Learning with incremental iterative regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/6015-learning-with-incremental-iterative-regularization>
Learning with Incremental Iterative Regularization_1405.0042v2.pdf (504.66 KB)

Less is More: Nyström Computational Regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5936-less-is-more-nystrom-computational-regularization>
Less is More- Nystr ̈om Computational Regularization_1507.04717v4.pdf (287.14 KB)

Notes on Hierarchical Splines, DCLNs and i-theory. (2015).
CBMM Memo 037 (1.83 MB)

Unsupervised learning of invariant representations. Theoretical Computer Science (2015). doi:10.1016/j.tcs.2015.06.048
Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).
1510.04935v2.pdf (360.65 KB)

On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009
imaiai.iaw009.full_.pdf (267.87 KB)

Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).
CBMM-Memo-058v1.pdf (2.42 MB)
CBMM-Memo-058v5.pdf (2.45 MB)
CBMM-Memo-058-v6.pdf (2.74 MB)
Proposition 4 has been deleted (2.75 MB)




Computational and Cognitive Neuroscience of Vision 85-104 (Springer, 2017).
Symmetry Regularization. (2017).
CBMM-Memo-063.pdf (6.1 MB)
