Publication

Found 120 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is H  [Clear All Filters]
2023
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Houlihan, S. Dae, Kleiman-Weiner, M., Hewitt, L. B., Tenenbaum, J. B. & Saxe, R. Emotion prediction as computation over a generative theory of mind. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381, (2023).PDF icon houlihan2023computedappraisals.pdf (2.37 MB)
Houlihan, S. Dae, Kleiman-Weiner, M., Hewitt, L. B., Tenenbaum, J. B. & Saxe, R. Emotion prediction as computation over a generative theory of mind. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381, (2023).PDF icon houlihan2023computedappraisals.pdf (2.37 MB)
Han, Y., Poggio, T. & Cheung, B. System Identification of Neural Systems: If We Got It Right, Would We Know?. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 12430-12444 (2023).PDF icon han23d.pdf (797.48 KB)
2022
Yaari, A. et al. The Aligned Multimodal Movie Treebank: An audio, video, dependency-parse treebank. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (2022).
Harrington, A. & Deza, A. Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks. International Conference on Learning Representations (ICLR) (2022). at <https://openreview.net/forum?id=yeP_zx9vqNm>
Xu, C. et al. Lecture Notes in Computer ScienceComputer Vision – ECCV 2022Image2Point: 3D Point-Cloud Understanding with 2D Image Pretrained Models. 13697, 638 - 656 (Springer Nature Switzerland, 2022).
Houlihan, S. Dae, Ong, D., Cusimano, M. & Saxe, R. Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind. Proceedings of the Annual Conference of the Cognitive Science Society 44, 854-861 (2022).PDF icon Houlihan 2022 Proceedings of the 44th Annual Conference of the Cognitive Science Society.pdf (687.98 KB)
Casper, S., Nadeau, M., Hadfield-Menell, D. & Kreiman, G. Robust Feature-Level Adversaries are Interpretability Tools. NeurIPS (2022). at <https://openreview.net/forum?id=lQ--doSB2o>PDF icon 8789_robust_feature_level_adversari.pdf (3.79 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).

Pages