Publication

Found 230 results
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is L  [Clear All Filters]
2015
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nature Neuroscience 18, 1844 (2015).PDF icon Preprint (40.28 MB)
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nature Neuroscience 18, 1844 (2015).PDF icon Preprint (40.28 MB)
Madhavan, R. et al. Decrease in gamma-band activity tracks sequence learning. Frontiers in Systems Neuroscience 8, (2015).PDF icon fnsys-08-00222.pdf (5.62 MB)
Johnson, M. J., Linderman, S. W., Datta, S. R. & Adams, R. Discovering Switching Autoregressive Dynamics in Neural Spike Train Recordings. (2015).PDF icon cosyne2015b.pdf (7.27 MB)
Wu, J., Yildirim, I., Lim, J. J., Freeman, W. T. & Tenenbaum, J. B. Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5780-galileo-perceiving-physical-object-properties-by-integrating-a-physics-engine-with-deep-learning>
Liao, Q., Leibo, J. Z. & Poggio, T. How Important is Weight Symmetry in Backpropagation?. (2015).PDF icon 1510.05067v3.pdf (615.32 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important is Weight Symmetry in Backpropagation?. (2015).PDF icon 1510.05067v3.pdf (615.32 KB)
Meyers, E. How PFC and LIP process single and multiple-object ‘pop-out’ displays. Society for Neuroscience (2015). at <https://www.sfn.org/~/media/SfN/Documents/Annual%20Meeting/FinalProgram/NS2015/Full%20Abstract%20PDFs%202015/SfN15_Abstracts_PDF_Nanos.ashx>
Gerstenberg, T., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. How, whether, why: Causal judgments as counterfactual contrasts. Annual Meeting of the Cognitive Science Society (CogSci) 782-787 (2015). at <https://mindmodeling.org/cogsci2015/papers/0142/index.html>PDF icon GerstenbergEtAl2015-Cogsci.pdf (2.16 MB)
Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332-1338 (2015).
Linderman, S. W., Adams, R. & Pillow, J. Inferring structured connectivity from spike trains under negative-binomial generalized linear models. (2015).PDF icon cosyne2015a.pdf (384.83 KB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).Binary Data modularity_dataset_ver1.tar.gz (36.14 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).Binary Data modularity_dataset_ver1.tar.gz (36.14 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).PDF icon journal.pcbi_.1004390.pdf (2.04 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).PDF icon journal.pcbi_.1004390.pdf (2.04 MB)
Ellis, K. & Lewis, O. Metareasoning in Symbolic Domains. NIPS Workshop | Bounded Optimality and Rational Metareasoning (2015). at <https://sites.google.com/site/boundedoptimalityworkshop/>PDF icon metareasoning_submitted.pdf (491.95 KB)
Buice, M. & de Vries, S. Population Coding, Correlations, and Functional Connectivity in the mouse visual system with the Cortical Activity Map (CAM). Society for Neuroscience 2015 (2015).PDF icon 2015 SFN Population_Coding.pdf (2.94 MB)
Liu, S. & Spelke, E. S. Six-month-old infants represent action efficiency on a continuous scale. 9th Biennial Meeting of the Cognitive Development Society (CDS) (2015).
Anselmi, F. et al. Unsupervised learning of invariant representations. Theoretical Computer Science (2015). doi:10.1016/j.tcs.2015.06.048
Lotter, W., Kreiman, G. & Cox, D. UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS. (2015).PDF icon CBMM Memo 040_rev1.pdf (1.92 MB)

Pages