Publication

Found 332 results
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is M  [Clear All Filters]
2020
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Mhaskar, H. & Poggio, T. Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Schrimpf, M. et al. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron 108, 413 - 423 (2020).
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Richardson, H. et al. Response patterns in the developing social brain are organized by social and emotion features and disrupted in children diagnosed with autism spectrum disorder. Cortex 125, 12 - 29 (2020).
Hicks, J. M. & McDermott, J. H. Segregation from Noise as Outlier Detection . Association for Research in Otolaryngology (2020).
Dapello, J. et al. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://proceedings.neurips.cc/paper/2020/hash/98b17f068d5d9b7668e19fb8ae470841-Abstract.html>
Isik, L., Mynick, A., Pantazis, D. & Kanwisher, N. The speed of human social interaction perception. NeuroImage 116844 (2020). doi:10.1016/j.neuroimage.2020.116844
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <http://www.threedworld.org/>
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <http://www.threedworld.org/>
McPherson, M. J. & McDermott, J. H. Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory. Proceedings of the National Academy of Sciences 117, 32169 - 32180 (2020).
McPherson, M. J. & McDermott, J. H. Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory. Proceedings of the National Academy of Sciences 117, 32169 - 32180 (2020).
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Using task-optimized neural networks to understand why brains have specialized processing for faces . Computational and Systems Neurosciences (2020).
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks . Conference on Cognitive Computational Neuroscience (2020).

Pages