Publication

Found 332 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is M  [Clear All Filters]
2021
McNamee, D., Stachenfeld, K., Botvinick, M. M. & Gershman, S. J. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nature Neuroscience (2021). doi:10.1038/s41593-021-00831-7
Conwell, C. et al. Large-scale benchmarking of deep neural network models in mouse visual cortex reveals patterns similar to those observed in macaque visual cortex. Cosyne (2021).
Zaslavsky, N., Maldonado, M. & Culbertson, J. Let's talk (efficiently) about us: Person systems achieve near-optimal compression. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Wang, J., Tao, A., Anderson, W. S., Madsen, J. R. & Kreiman, G. Mesoscopic physiological interactions in the human brain reveal small-world properties. Cell Reports 36, 109585 (2021).
Allen, K. et al. Meta-strategy learning in physical problem solving: the effect of embodied experience. bioRxiv (2021).PDF icon 2021.07.08.451333v2.full_.pdf (3.05 MB)
Marques, T., Schrimpf, M. & DiCarlo, J. J. Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior. bioRxiv (2021).PDF icon 2021.03.01.433495v2.full_.pdf (3.23 MB)
Conwell, C. et al. Neural Regression, Representational Similarity, Model Zoology Neural Taskonomy at Scale in Rodent Visual Cortex. (2021).PDF icon CBMM-Memo-131.pdf (9.37 MB)
Valente, S., Marques, T. & Lima, S. Q. No evidence for prolactin’s involvement in the post-ejaculatory refractory periodAbstract. Communications Biology 4, (2021).
Mao, J. et al. Temporal and Object Quantification Networks. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (Zhou, Z. - H.) (2021). doi:10.24963/ijcai.2021/386PDF icon 0386.pdf (472.5 KB)
Wang, B., Mayo, D., Deza, A., Barbu, A. & Conwell, C. On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation. Shared Visual Representations in Human and Machine Intelligence (SVRHM) Workshop at NeurIPS (2021). at <https://openreview.net/forum?id=Rpazl253IHb>
Bomatter, P. et al. When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes. International Conference on Computer Vision (ICCV) (2021). doi:10.1109/iccv48922.2021.00032PDF icon Bomatter_When_Pigs_Fly_Contextual_Reasoning_in_Synthetic_and_Natural_Scenes_ICCV_2021_paper.pdf (3.24 MB)
2020
Kim, D. et al. The ability to predict actions of others from distributed cues is still developing in children. PsyArXiv Preprints (2020). doi:10.31234/osf.io/pu3tfPDF icon Action_prediction_in_children.pdf (427.84 KB)
Kim, D. et al. The ability to predict actions of others from distributed cues is still developing in children. PsyArXiv Preprints (2020). doi:10.31234/osf.io/pu3tfPDF icon Action_prediction_in_children.pdf (427.84 KB)
Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nature Neuroscience 23, 1597 - 1605 (2020).PDF icon s41593-020-00742-z.pdf (5.47 MB)
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121, 229 - 241 (2020).
Madan, S. et al. On the Capability of Neural Networks to Generalize to Unseen Category-Pose Combinations. (2020).PDF icon CBMM-Memo-111.pdf (9.76 MB)
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Mhaskar, H. & Poggio, T. Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Schrimpf, M. et al. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron 108, 413 - 423 (2020).
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).

Pages