Publication

Found 283 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is P  [Clear All Filters]
2017
Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. Eye-Tracking Causality. Psychological Science 73, (2017).
Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A. & Tenenbaum, J. B. Eye-Tracking Causality. Psychological Science (2017).PDF icon eye_tracking_causality.pdf (8.04 MB)
Isik, L., Tacchetti, A. & Poggio, T. A fast, invariant representation for human action in the visual system. J Neurophysiol jn.00642.2017 (2017). doi:10.1152/jn.00642.2017PDF icon Author's last draft (695.63 KB)
Liang, T., Poggio, T., Rakhlin, A. & Stokes, J. Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. arXiv.org (2017). at <https://arxiv.org/abs/1711.01530>PDF icon 1711.01530.pdf (966.99 KB)
Tsividis, P., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman, S. J. Human Learning in Atari. AAAI Spring Symposium Series (2017).PDF icon Tsividis et al - Human Learning in Atari.pdf (844.47 KB)
Han, Y., Roig, G., Geiger, G. & Poggio, T. On the Human Visual System Invariance to Translation and Scale. Vision Sciences Society (2017).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).
Tacchetti, A., Isik, L. & Poggio, T. Invariant action recognition dataset. (2017). at <https://doi.org/10.7910/DVN/DMT0PG>
Tacchetti, A., Isik, L. & Poggio, T. Invariant recognition drives neural representations of action sequences. PLoS Comp. Bio (2017).
Tacchetti, A., Isik, L. & Poggio, T. Invariant recognition drives neural representations of action sequences. PLOS Computational Biology 13, e1005859 (2017).PDF icon journal.pcbi_.1005859.pdf (9.24 MB)
Mutch, J. et al. Computational and Cognitive Neuroscience of Vision 85-104 (Springer, 2017).
Zhang, C. et al. Musings on Deep Learning: Properties of SGD. (2017).PDF icon CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)PDF icon CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)PDF icon CBMM Memo 067 v4 (revised 12/26/2017) (5.57 MB)
Grossman, N. et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 169, 1029 - 1041.e16 (2017).
Liao, Q. & Poggio, T. Object-Oriented Deep Learning. (2017).PDF icon CBMM-Memo-070.pdf (963.54 KB)
Penagos, H., Varela, C. & Wilson, M. A. Oscillations, neural computations and learning during wake and sleep. Current Opinion in Neurobiology 44C, (2017).
Manek, G. et al. Pruning Convolutional Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1707.05455>PDF icon 1707.05455.pdf (143.46 KB)
Tacchetti, A., Voinea, S., Evangelopoulos, G. & Poggio, T. Representation Learning from Orbit Sets for One-shot Classification. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15357>
Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nature Neuroscience 5631628, (2017).
Anselmi, F., Evangelopoulos, G., Rosasco, L. & Poggio, T. Symmetry Regularization. (2017).PDF icon CBMM-Memo-063.pdf (6.1 MB)
Paul, R., Barbu, A., Felshin, S., Katz, B. & Roy, N. Temporal Grounding Graphs for Language Understanding with Accrued Visual-Linguistic Context. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017) (2017). at <c>
Poggio, T. & Liao, Q. Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).PDF icon CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
Zhang, C. et al. Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).PDF icon CBMM-Memo-072.pdf (3.66 MB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Jing, L. et al. Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNN. 34th International Conference on Machine Learning 70, 1733-1741 (2017).PDF icon 1612.05231.pdf (2.3 MB)
Leibo, J. Z., Liao, Q., Anselmi, F., Freiwald, W. A. & Poggio, T. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation. Current Biology 27, 1-6 (2017).

Pages