Publication

Found 416 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2018
Spokes, A. C. & Spelke, E. S. At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLOS ONE 13, (2018).
Spokes, A. C. & Spelke, E. S. At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLOS ONE 13, (2018).
Schrimpf, M. & Kubilius, J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv preprint (2018). doi:10.1101/407007PDF icon Brain-Score bioRxiv.pdf (789.83 KB)
Schrimpf, M. & Kubilius, J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv preprint (2018). doi:10.1101/407007PDF icon Brain-Score bioRxiv.pdf (789.83 KB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Organization for Computational Neurosciences - CNS 2018 (2018). at <http://www.cnsorg.org/cns-2018>
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Social & Affective Neuroscience Society (SANS) (2018). at <http://www.socialaffectiveneuro.org/conferences.html>
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Société Francophone de Primatologie (SFDP) Annual Meeting, Paris, France (2018).
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Cognitive Neuroscience Society Annual Meeting (CNS), Boston, MA (2018).
Livingstone, M. S., Arcaro, M. J. & Schade, P. F. Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development. Trends in Cognitive Sciences (2018). doi:10.1016/j.tics.2018.10.009PDF icon 1-s2.0-S1364661318302572-main.pdf (260.4 KB)
Shen, W. et al. Deep Regression Forests for Age Estimation. (2018).PDF icon CBMM-Memo-085.pdf (2.2 MB)
Toussaint, M., Allen, K., Smith, K. A. & Tenenbaum, J. B. Differentiable physics and stable modes for tool-use and manipulation planning. Robotics: Science and Systems 2018 (2018).PDF icon ToussaintEtAl_DiffPhysStable.pdf (1.97 MB)
Belbute-Peres, Fde Avila, Smith, K. A., Allen, K., Tenenbaum, J. B. & Kolter, Z. End-to-end differentiable physics for learning and control. Advances in Neural Information Processing Systems 31 (NIPS 2018) (2018).PDF icon 7948-end-to-end-differentiable-physics-for-learning-and-control.pdf (794.17 KB)
Dillon, M. R. & Spelke, E. S. From Map Reading to Geometric Intuitions. Developmental Psychology (2018). doi:http://dx.doi.org/10.1037/dev0000509
Saxe, R. Imaging the infant brain. Japanese Society for Neuroscience Kobe Japan, (2018).
Ullman, T. D., Stuhlmüller, A., Goodman, N. D. & Tenenbaum, J. B. Learning physical parameters from dynamic scenes. Cognitive Psychology 104, 57-82 (2018).PDF icon T-Ullman-etal_CogPsych_LearningPhysicalParametersFromDynamicScenes.pdf (3.15 MB)
Wu, Y., Baker, C., Tenenbaum, J. B. & Schulz, L. Rational inference of beliefs and desires from emotional expressions. Cognitive Science 42, (2018).PDF icon Wu_Baker_Tenenbaum_Schulz_in_press_cognitive_science.pdf (1.65 MB)
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Liu, C. et al. Recurrent Multimodal Interaction for Referring Image Segmentation. (2018).PDF icon CBMM-Memo-079.pdf (10.16 MB)
Owaki, T. et al. Searching for visual features that explain response variance of face neurons in inferior temporal cortex. PLOS ONE 13, e0201192 (2018).
Adhya, D. et al. Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. BioRxiv (2018). doi:10.1101/349415

Pages