Publication

Found 113 results
Author Title Type [ Year(Desc)]
Filters: Author is Tenenbaum, Joshua B.  [Clear All Filters]
2020
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. B. Learning abstract structure for drawing by efficient motor program induction. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://papers.nips.cc/paper/2020/hash/1c104b9c0accfca52ef21728eaf01453-Abstract.html>
Nye, M., Solar-Lezama, A., Tenenbaum, J. B. & Lake, B. M. Learning Compositional Rules via Neural Program Synthesis. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://proceedings.neurips.cc/paper/2020/hash/7a685d9edd95508471a9d3d6fcace432-Abstract.html>PDF icon 2003.05562.pdf (2.51 MB)
Levine, S., Kleiman-Weiner, M., Schulz, L., Tenenbaum, J. B. & Cushman, F. A. The logic of universalization guides moral judgment. Proceedings of the National Academy of Sciences (PNAS) 202014505 (2020). doi:10.1073/pnas.2014505117
Sheskin, M. et al. Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences 24, 675 - 678 (2020).
Netanyahu, A., Shu, T., Katz, B., Barbu, A. & Tenenbaum, J. B. PHASE: PHysically-grounded Abstract Social Eventsfor Machine Social Perception. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://openreview.net/forum?id=_bokm801zhx>PDF icon phase_physically_grounded_abstract_social_events_for_machine_social_perception.pdf (2.49 MB)
Allen, K., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proceedings of the National Academy of Sciences 201912341 (2020). doi:10.1073/pnas.1912341117PDF icon 1912341117.full_.pdf (2.15 MB)
Dasgupta, I., Schulz, E., Tenenbaum, J. B. & Gershman, S. J. A theory of learning to infer. Psychological Review 127, 412 - 441 (2020).
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Schwartz, J. et al. ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation. (2020). at <http://www.threedworld.org/>
Eisape, T., Levy, R., Tenenbaum, J. B. & Zaslavsky, N. Toward human-like object naming in artificial neural systems . International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop (2020).
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Allen, K. et al. Meta-strategy learning in physical problem solving: the effect of embodied experience. bioRxiv (2021).PDF icon 2021.07.08.451333v2.full_.pdf (3.05 MB)
Sosa, F. A., Ullman, T., Tenenbaum, J. B., Gershman, S. J. & Gerstenberg, T. Moral dynamics: Grounding moral judgment in intuitive physics and intuitive psychology. Cognition 217, 104890 (2021).
Schrimpf, M. et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences 118, e2105646118 (2021).
Houlihan, S. Dae, Tenenbaum, J. B. & Saxe, R. The Neural Basis of Mentalizing: Linking Models of Theory of Mind and Measures of Human Brain Activity. 209 - 235 (Springer International Publishing, 2021). doi:10.1007/978-3-030-51890-510.1007/978-3-030-51890-5_11
Netanyahu, A., Shu, T., Katz, B., Barbu, A. & Tenenbaum, J. B. PHASE: PHysically-grounded Abstract Social Events for Machine Social Perception. AAAI-21 (2021).
Netanyahu, A., Shu, T., Katz, B., Barbu, A. & Tenenbaum, J. B. PHASE: PHysically-grounded Abstract Social Events for Machine Social Perception. (2021).PDF icon CBMM-Memo-123.pdf (3.08 MB)
Kryven, M., Ullman, T. D., Cowan, W. & Tenenbaum, J. B. Plans or Outcomes: How Do We Attribute Intelligence to Others?. Cognitive Science 45, (2021).
Mao, J. et al. Temporal and Object Quantification Networks. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (Zhou, Z. - H.) (2021). doi:10.24963/ijcai.2021/386PDF icon 0386.pdf (472.5 KB)
Du, Y., Smith, K. A., Ullman, T., Tenenbaum, J. B. & Wu, J. Unsupervised Discovery of 3D Physical Objects. International Conference on Learning Representations (2021). at <https://openreview.net/forum?id=lf7st0bJIA5>
Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nature Computational Science 1, 678 - 685 (2021).PDF icon s43588-021-00130-y.pdf (1.96 MB)
2022
Liu, S. et al. Dangerous Ground: One-Year-Old Infants are Sensitive to Peril in Other Agents’ Action PlansAbstract. Open Mind 6, 211 - 231 (2022).
Tejwani, R. et al. Incorporating Rich Social Interactions Into MDPs. (2022).PDF icon CBMM-Memo-133.pdf (1.68 MB)
Tejwani, R. et al. Incorporating Rich Social Interactions Into MDPs. 2022 IEEE International Conference on Robotics and Automation (ICRA)2022 International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811991

Pages