Publication

Export 145 results:
Filters: Author is Tomaso Poggio  [Clear All Filters]
2016
Liao, Q. & Poggio, T. Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex. (2016).PDF icon CBMM Memo No. 047 (1.29 MB)
Poggio, T. Deep Leaning: Mathematics and Neuroscience. A Sponsored Supplement to Science Brain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9-12 (2016).
Poggio, T. Deep Learning: mathematics and neuroscience. (2016).PDF icon Deep Learning- mathematics and neuroscience.pdf (1.25 MB)
Mhaskar, H. & Poggio, T. Deep vs. shallow networks : An approximation theory perspective. (2016).PDF icon Original submission, visit the link above for the updated version (960.27 KB)
Mhaskar, H. & Poggio, T. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications 14, 829 - 848 (2016).
Isik, L., Tacchetti, A. & Poggio, T. Fast, invariant representation for human action in the visual system. (2016). at <http://arxiv.org/abs/1601.01358>PDF icon CBMM Memo 042 (3.03 MB)
Luo, Y., Boix, X., Roig, G., Poggio, T. & Zhao, Q. Foveation-based Mechanisms Alleviate Adversarial Examples. (2016).PDF icon cbmm_memo_044.pdf (11.48 MB)
Morère, O. et al. Group Invariant Deep Representations for Image Instance Retrieval. (2016).PDF icon CBMM-Memo-043.pdf (2.66 MB)
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).PDF icon 1510.04935v2.pdf (360.65 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016). at <https://cbmm.mit.edu/sites/default/files/publications/liao-leibo-poggio.pdf>
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (Association for the Advancement of Artificial Intelligence, 2016).PDF icon liao-leibo-poggio.pdf (191.91 KB)
Bach, F. & Poggio, T. Introduction Special issue: Deep learning. Information and Inference 5, 103-104 (2016).
Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009PDF icon imaiai.iaw009.full_.pdf (267.87 KB)
Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than Shallow. (2016). at <https://arxiv.org/pdf/1603.00988v4.pdf>
Morère, O., Veillard, A., Chandrasekhar, V. & Poggio, T. Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval. arXiv.org (2016). at <https://arxiv.org/abs/1603.04595>PDF icon 1603.04595.pdf (2.9 MB)
Tan, C. & Poggio, T. Neural Tuning Size in a Model of Primate Visual Processing Accounts for Three Key Markers of Holistic Face Processing. Public Library of Science | PLoS ONE 1(3): e0150980, (2016).PDF icon journal.pone_.0150980.PDF (384.15 KB)
Lewis, O. & Poggio, T. From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <https://mitpress.mit.edu/neuron-cognition>
Tacchetti, A., Isik, L. & Poggio, T. Spatio-temporal convolutional networks explain neural representations of human actions. (2016).
Liao, Q., Kawaguchi, K. & Poggio, T. Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016).PDF icon CBMM-Memo-057.pdf (1.27 MB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).PDF icon CBMM-Memo-058v1.pdf (2.42 MB)PDF icon CBMM-Memo-058v5.pdf (2.45 MB)PDF icon CBMM-Memo-058-v6.pdf (2.74 MB)PDF icon Proposition 4 has been deleted (2.75 MB)
Poggio, T. & Meyers, E. Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).PDF icon Turing_Plus_Questions.pdf (424.91 KB)

Pages