Publication

Found 171 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is C  [Clear All Filters]
2021
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <https://dblp.org/rec/conf/aaai/CasperBDGSVK21.html>PDF icon 1912.04783.pdf (6.69 MB)
Sani, I. et al. The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications 12, (2021).
Conwell, C. et al. Large-scale benchmarking of deep neural network models in mouse visual cortex reveals patterns similar to those observed in macaque visual cortex. Cosyne (2021).
Zaslavsky, N., Maldonado, M. & Culbertson, J. Let's talk (efficiently) about us: Person systems achieve near-optimal compression. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Weisholtz, D. S. et al. Localized task-invariant emotional valence encoding revealed by intracranial recordingsAbstract. Social Cognitive and Affective Neuroscience (2021). doi:10.1093/scan/nsab134
Allen, K. et al. Meta-strategy learning in physical problem solving: the effect of embodied experience. bioRxiv (2021).PDF icon 2021.07.08.451333v2.full_.pdf (3.05 MB)
Conwell, C. et al. Neural Regression, Representational Similarity, Model Zoology Neural Taskonomy at Scale in Rodent Visual Cortex. (2021).PDF icon CBMM-Memo-131.pdf (9.37 MB)
Kryven, M., Ullman, T. D., Cowan, W. & Tenenbaum, J. B. Plans or Outcomes: How Do We Attribute Intelligence to Others?. Cognitive Science 45, (2021).
Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Current Biology 32, (2021).
Wang, B., Mayo, D., Deza, A., Barbu, A. & Conwell, C. On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation. Shared Visual Representations in Human and Machine Intelligence (SVRHM) Workshop at NeurIPS (2021). at <https://openreview.net/forum?id=Rpazl253IHb>
2020
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Levine, S., Kleiman-Weiner, M., Schulz, L., Tenenbaum, J. B. & Cushman, F. A. The logic of universalization guides moral judgment. Proceedings of the National Academy of Sciences (PNAS) 202014505 (2020). doi:10.1073/pnas.2014505117
Poggio, T. & Cooper, Y. Loss landscape: SGD has a better view. (2020).PDF icon CBMM-Memo-107.pdf (1.03 MB)PDF icon Typos and small edits, ver11 (955.08 KB)PDF icon Small edits, corrected Hessian for spurious case (337.19 KB)
Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nature Machine Intelligence 2, 210 - 219 (2020).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. Nature Machine Learning (2020).PDF icon 1805.10734.pdf (9.59 MB)
Dapello, J. et al. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <https://proceedings.neurips.cc/paper/2020/hash/98b17f068d5d9b7668e19fb8ae470841-Abstract.html>
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Using task-optimized neural networks to understand why brains have specialized processing for faces . Computational and Systems Neurosciences (2020).
Dobs, K., Kell, A. J. E., Martinez-Trujillo, J., Cohen, M. & Kanwisher, N. Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks . Conference on Cognitive Computational Neuroscience (2020).

Pages