Publication

Found 60 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is U  [Clear All Filters]
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Ullman, S. et al. Image interpretation by iterative bottom-up top- down processing. (2021).PDF icon CBMM-Memo-120.pdf (2.83 MB)
Sosa, F. A., Ullman, T., Tenenbaum, J. B., Gershman, S. J. & Gerstenberg, T. Moral dynamics: Grounding moral judgment in intuitive physics and intuitive psychology. Cognition 217, 104890 (2021).
Bass, I., Smith, K. A., Bonawitz, E. & Ullman, T. Partial Mental Simulation Explains Fallacies in Physical Reasoning. psyArXiv (2021). at <https://psyarxiv.com/y4a8x>
Kryven, M., Ullman, T. D., Cowan, W. & Tenenbaum, J. B. Plans or Outcomes: How Do We Attribute Intelligence to Others?. Cognitive Science 45, (2021).
Mao, J. et al. Temporal and Object Quantification Networks. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (Zhou, Z. - H.) (2021). doi:10.24963/ijcai.2021/386PDF icon 0386.pdf (472.5 KB)
Du, Y., Smith, K. A., Ullman, T., Tenenbaum, J. B. & Wu, J. Unsupervised Discovery of 3D Physical Objects. International Conference on Learning Representations (2021). at <https://openreview.net/forum?id=lf7st0bJIA5>
2020
Udrescu, S. - M. et al. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020).PDF icon 2006.10782.pdf (2.62 MB)
Ullman, T. D. & Tenenbaum, J. B. Bayesian Models of Conceptual Development: Learning as Building Models of the World. Annual Review of Developmental Psychology 2, 533 - 558 (2020).
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Ben-Yosef, G., Kreiman, G. & Ullman, S. Minimal videos: Trade-off between spatial and temporal information in human and machine vision. Cognition (2020). doi:10.1016/j.cognition.2020.104263
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <https://baicsworkshop.github.io/pdf/BAICS_1.pdf>PDF icon Authors' final version (516.09 KB)

Pages