Publication

Found 159 results
Author Title Type [ Year(Desc)]
Filters: Author is Tomaso A. Poggio  [Clear All Filters]
2016
Morère, O. et al. Group Invariant Deep Representations for Image Instance Retrieval. (2016).PDF icon CBMM-Memo-043.pdf (2.66 MB)
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).PDF icon 1510.04935v2.pdf (360.65 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (Association for the Advancement of Artificial Intelligence, 2016).PDF icon liao-leibo-poggio.pdf (191.91 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016). at <https://cbmm.mit.edu/sites/default/files/publications/liao-leibo-poggio.pdf>
Bach, F. & Poggio, T. Introduction Special issue: Deep learning. Information and Inference 5, 103-104 (2016).
Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009PDF icon imaiai.iaw009.full_.pdf (267.87 KB)
Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than Shallow. (2016). at <https://arxiv.org/pdf/1603.00988v4.pdf>
Morère, O., Veillard, A., Chandrasekhar, V. & Poggio, T. Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval. arXiv.org (2016). at <https://arxiv.org/abs/1603.04595>PDF icon 1603.04595.pdf (2.9 MB)
Tan, C. & Poggio, T. Neural Tuning Size in a Model of Primate Visual Processing Accounts for Three Key Markers of Holistic Face Processing. Public Library of Science | PLoS ONE 1(3): e0150980, (2016).PDF icon journal.pone_.0150980.PDF (384.15 KB)
Lewis, O. & Poggio, T. From Neuron to Cognition via Computational Neuroscience (The MIT Press, 2016). at <https://mitpress.mit.edu/neuron-cognition>
Tacchetti, A., Isik, L. & Poggio, T. Spatio-temporal convolutional networks explain neural representations of human actions. (2016).
Liao, Q., Kawaguchi, K. & Poggio, T. Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016).PDF icon CBMM-Memo-057.pdf (1.27 MB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).PDF icon CBMM-Memo-058v1.pdf (2.42 MB)PDF icon CBMM-Memo-058v5.pdf (2.45 MB)PDF icon CBMM-Memo-058-v6.pdf (2.74 MB)PDF icon Proposition 4 has been deleted (2.75 MB)
Poggio, T. & Meyers, E. Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).PDF icon Turing_Plus_Questions.pdf (424.91 KB)
Leibo, J. Z., Liao, Q., Freiwald, W. A., Anselmi, F. & Poggio, T. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016).PDF icon faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
Poggio, T. & Anselmi, F. Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <https://mitpress.mit.edu/books/visual-cortex-and-deep-networks>
2017
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Volokitin, A., Roig, G. & Poggio, T. Do Deep Neural Networks Suffer from Crowding?. (2017).PDF icon CBMM-Memo-069.pdf (6.47 MB)
Roig, G., Chen, F., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks for Modeling Human Vision. Vision Sciences Society (2017).
Chen, F., Roig, G., Isik, L., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>PDF icon paper.pdf (963.87 KB)
Isik, L., Tacchetti, A. & Poggio, T. A fast, invariant representation for human action in the visual system. J Neurophysiol jn.00642.2017 (2017). doi:10.1152/jn.00642.2017PDF icon Author's last draft (695.63 KB)
Liang, T., Poggio, T., Rakhlin, A. & Stokes, J. Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. arXiv.org (2017). at <https://arxiv.org/abs/1711.01530>PDF icon 1711.01530.pdf (966.99 KB)
Han, Y., Roig, G., Geiger, G. & Poggio, T. On the Human Visual System Invariance to Translation and Scale. Vision Sciences Society (2017).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).
Tacchetti, A., Isik, L. & Poggio, T. Invariant action recognition dataset. (2017). at <https://doi.org/10.7910/DVN/DMT0PG>

Pages