Publication

Found 55 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Title is L  [Clear All Filters]
2017
Learning a commonsense moral theory. (2017).
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Auditory Codes from Natural Sound Statistics. (2017).PDF icon MlynarskiMcDermott_Memo060.pdf (7.11 MB)
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Association for Otolaryngology Mid-Winter Meeting (2017).
Wu, J., Lu, E., Kohli, P., Freeman, W. T. & Tenenbaum, J. B. Learning to See Physics via Visual De-animation. Advances in Neural Information Processing Systems 30 152–163 (2017). at <http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation.pdf>PDF icon Learning to See Physics via Visual De-animation (1.11 MB)
Traer, J. & McDermott, J. H. A library of real-world reverberation and a toolbox for its analysis and measurement. Annual Meeting of Acoustical Society of America (2017).
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like Adults, children make consistent welfare tradeoff allocations. Budapest CEU Conference on Cognitive Development (2017).
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Like adults, children make consistent welfare tradeoff allocations. Society for Research in Child Development Biennial Meeting (2017).
Telenczuk, B. et al. Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex. Nature Scientific Reports (2017). doi:10.1038/srep40211PDF icon srep40211.pdf (2.53 MB)
Scott, K. M. & Schulz, L. Lookit (Part 1): a new online platform for developmental research. Open Mind 1, (2017).PDF icon UNCORRECTED PROOF (561.21 KB)
Scott, K. M., Chu, J. & Schulz, L. Lookit (Part 2): Assessing the viability of online developmental research, Results from three case studies. Open Mind 1, (2017).PDF icon lookitpart2.pdf (464.02 KB)
Mlynarski, W. & McDermott, J. H. Lossy Compression of Uninformative Stimuli in the Auditory System. Association for Otolaryngology Mid-Winter Meeting (2017).
2016
Berzak, Y., Barbu, A., Harari, D., Katz, B. & Ullman, S. Language and Vision Ambiguities (LAVA) Corpus. (2016). at <http://web.mit.edu/lavacorpus/>PDF icon D15-1172.pdf (2.42 MB)
Mhaskar, H., Liao, Q. & Poggio, T. Learning Functions: When Is Deep Better Than Shallow. (2016). at <https://arxiv.org/pdf/1603.00988v4.pdf>
Mlynarski, W. & McDermott, J. H. Learning Mid-Level Codes for Natural Sounds. Advances and Perspectives in Auditory Neuroscience (2016).PDF icon APAN_large_JHM kopia.pdf (19.74 MB)
Mlynarski, W. & McDermott, J. H. Learning mid-level codes for natural sounds. Computational and Systems Neuroscience (Cosyne) 2016 (2016). at <http://www.cosyne.org/c/index.php?title=Cosyne2016_posters_2>PDF icon Wiktor_COSYNE_2015_hierarchy_final.pdf (2.52 MB)
Morales, A., Premtoon, V., Avery, C., Felshin, S. & Katz, B. Learning to Answer Questions from Wikipedia Infoboxes. The 2016 Conference on Empirical Methods on Natural Language Processing (EMNLP 2016) (2016).PDF icon Morales-EMNLP2016.pdf (197.28 KB)
Owens, A., Isola, P., McDermott, J. H., Freeman, W. T. & Torralba, A. Lecture Notes in Computer ScienceComputer Vision – ECCV 2016Ambient Sound Provides Supervision for Visual Learning. 14th European Conference on Computer Vision 801 - 816 (2016). doi:10.1007/978-3-319-46448-010.1007/978-3-319-46448-0_48
Katz, B. & Barbu, A. A look back at the June 2016 BMM Workshop in Sestri Levante, Italy. (2016).PDF icon Sestri Levante Review (359.33 KB)
Mlynarski, W. & McDermott, J. H. Lossy Compression of Sound Texture by the Human Auditory System. Society for Neuroscience Meeting (2016).
2015
Mao, J. et al. Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images. International Conference of Computer Vision (2015). at <www.stat.ucla.edu/~junhua.mao/projects/child_learning.html>PDF icon child_learning_iccv2015.pdf (1.16 MB)
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M. & Poggio, T. Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>PDF icon Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Mroueh, Y., Voinea, S. & Poggio, T. Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>PDF icon LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Rosasco, L. & Villa, S. Learning with incremental iterative regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/6015-learning-with-incremental-iterative-regularization>PDF icon Learning with Incremental Iterative Regularization_1405.0042v2.pdf (504.66 KB)
Rudi, A., Camoriano, R. & Rosasco, L. Less is More: Nyström Computational Regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5936-less-is-more-nystrom-computational-regularization>PDF icon Less is More- Nystr ̈om Computational Regularization_1507.04717v4.pdf (287.14 KB)
Koch, C. Lust and the Turing test [Nature] . (2015). at <http://blogs.nature.com/aviewfromthebridge/2015/05/27/lust-and-the-turing-test/>PDF icon Lust and the Turing Test.pdf (203.1 KB)

Pages