Export 717 results:
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Zaslavsky, N., Hu, J. & Levy, R. Emergence of Pragmatic Reasoning From Least-Effort Optimization . 13th International Conference on the Evolution of Language (EvoLang) (2020).
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). doi:10.1109/IROS45743.2020.9341325
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Shalev-Shwartz, S. & Shashua, A. An Exit Strategy from the Covid-19 Lockdown based on Risk-sensitive Resource Allocation. (2020).PDF icon CBMM-Memo-106.pdf (431.13 KB)
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron (2020). doi:10.1016/j.neuron.2020.09.035PDF icon PIIS0896627320307595.pdf (3.92 MB)
Smith, K. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <>
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).PDF icon CBMM_Memo_108.pdf (1015.14 KB)PDF icon Better bound (without inequalities!) (1.03 MB)
Mhaskar, H. & Poggio, T. Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
Freiwald, W. A. Gross means Great. Progress in Neurobiology 195, 101924 (2020).
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Bill, J., Pailian, H., Gershman, S. J. & Drugowitsch, J. Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences 117, 24581 - 24589 (2020).
Deza, A., Liao, Q., Banburski, A. & Poggio, T. Hierarchically Local Tasks and Deep Convolutional Networks. (2020).PDF icon CBMM_Memo_109.pdf (2.12 MB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, (2020).
Poggio, T. & Liao, Q. Implicit dynamic regularization in deep networks. (2020).PDF icon TPR_ver2.pdf (2.29 MB)PDF icon Substantial edits (1.52 MB)PDF icon Edits that are extensive but minor in content (1.98 MB)PDF icon Extending theory, setting a post (2 MB)PDF icon Fine tuning (2.01 MB)PDF icon Corrections in Appendix about Neural Collapse (2.01 MB)PDF icon Small edits clarifying role of weight decay (2.39 MB)PDF icon Added: prove NC for multiclass+theorem on connected global minima (2.4 MB)
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)
Thomas, A. J., Saxe, R. & Spelke, E. S. Infants represent 'like-kin' affiliation . Budapest Conference on Cognitive Development (2020).
Dillon, M. R., Izard, V. & Spelke, E. S. Infants’ sensitivity to shape changes in 2D visual forms. Infancy 25, 618 - 639 (2020).
Rajalingham, R., Kar, K., Sanghavi, S., Dehaene, S. & DiCarlo, J. J. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications 11, (2020).PDF icon s41467-020-17714-3.pdf (25.01 MB)
Schrimpf, M. et al. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron 108, 413 - 423 (2020).
Wang, C., Ross, C., Kuo, Y. - L., Katz, B. & Barbu, A. Learning a Natural-language to LTL Executable Semantic Parser for Grounded Robotics. (Proceedings of Conference on Robot Learning (CoRL-2020), 2020). at <>
Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. B. Learning abstract structure for drawing by efficient motor program induction. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <>
Nye, M., Solar-Lezama, A., Tenenbaum, J. B. & Lake, B. M. Learning Compositional Rules via Neural Program Synthesis. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020). at <>PDF icon 2003.05562.pdf (2.51 MB)