Export 847 results:
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Wang, C. et al. BrainBERT: Self-supervised representation learning for Intracranial Electrodes. International Conference on Learning Representations (2023). at <>PDF icon 985_brainbert_self_supervised_repr.pdf (9.71 MB)
Kanwisher, N., Gupta, P. & Dobs, K. CNNs reveal the computational implausibility of the expertise hypothesis. iScience 26, 105976 (2023).
Xiao, Y. et al. Cross-task specificity and within-task invariance of cognitive control processes. Cell Reports 42, 111919 (2023).PDF icon PIIS2211124722018174.pdf (3.97 MB)
Zhang, Y. et al. Decoding of human identity by computer vision and neuronal visionAbstract. Scientific Reports 13, (2023).
Zhang, Y. et al. Decoding of human identity by computer vision and neuronal vision. Scientific Reports 13, (2023).PDF icon s41598-022-26946-w.pdf (1.88 MB)
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
Lee, M. J. & DiCarlo, J. J. An empirical assay of view-invariant object learning in humans and comparison with baseline image-computable models. bioRxiv (2023). at <>
Rangamani, A., Lindegaard, M., Galanti, T. & Poggio, T. Feature learning in deep classifiers through Intermediate Neural Collapse. (2023).PDF icon Feature_Learning_memo.pdf (2.16 MB)
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, minimizing the norm of the ERM solution maximizes stability. Analysis and Applications 21, 193 - 215 (2023).
Srinivasan, R. Francesco et al. Forward learning with top-down feedback: empirical and analytical characterization. arXiv (2023). at <>
Villa, S., Matet, S., Vũ, B. Công & Rosasco, L. Implicit regularization with strongly convex bias: Stability and acceleration. Analysis and Applications 21, 165 - 191 (2023).
Woo, B. M. & Spelke, E. S. Infants and toddlers leverage their understanding of action goals to evaluate agents who help others. Child Development (2023). doi:10.1111/cdev.13895
Tomov, M. S., Tsividis, P. A., Pouncy, T., Tenenbaum, J. B. & Gershman, S. J. The neural architecture of theory-based reinforcement learning. Neuron 111, 1331 - 1344.e8 (2023).
Kreiman, G. Neural coding: Stimulating cortex to alter visual perception. Current Biology 33, R117 - R118 (2023).
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. arXiv (2023). at <>
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Xiao, W., Sharma, S., Kreiman, G. & Livingstone, M. S. Out of sight, out of mind: Responses in primate ventral visual cortex track individual fixations during natural vision. bioRxiv (2023). doi:10.1101/2023.02.08.527666
Lagomarsino-Oneto, D. et al. Physics informed machine learning for wind speed prediction. Energy 268, 126628 (2023).
Kosakowski, H. L. et al. Preliminary evidence for selective cortical responses to music in one‐month‐old infants. Developmental Science (2023). doi:10.1111/desc.13387PDF icon Developmental Science - 2023 - Kosakowski - Preliminary evidence for selective cortical responses to music in one‐month‐old.pdf (2.6 MB)
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Bricken, T., Davies, X., Singh, D., Krotov, D. & Kreiman, G. Sparse distributed memory is a continual learner. International Conference on Learning Representations (2023). at <>PDF icon 6086_sparse_distributed_memory_is_a.pdf (13.3 MB)
Kanwisher, N., Khosla, M. & Dobs, K. Using artificial neural networks to ask ‘why’ questions of minds and brains. Trends in Neurosciences 46, 240 - 254 (2023).
Tejwani, R. et al. Zero-shot linear combinations of grounded social interactions with Linear Social MDPs. Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI) (2023).