Publication

Export 900 results:
2024
Montagna, F. et al. Assumption violations in causal discovery and the robustness of score matching. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (2024). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/93ed74938a54a73b5e4c52bbaf42ca8e-Paper-Conference.pdf>
Poggio, T. & Fraser, M. Compositional sparsity of learnable functions. Bulletin of the American Mathematical Society 61, 438-456 (2024).
Poggio, T. & Fraser, M. Compositional Sparsity of Learnable Functions. (2024).PDF icon CBMM-Memo-145.pdf (1.25 MB)
Mendoza-Halliday, D., Xu, H., Azevedo, F. A. C. & Desimone, R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 112, 850 - 863.e6 (2024).
Mahowald, K. et al. Dissociating language and thought in large language models. Trends in Cognitive Sciences 28, 517 - 540 (2024).
Gan, Y. & Poggio, T. For HyperBFs AGOP is a greedy approximation to gradient descent. (2024).PDF icon CBMM-Memo-148.pdf (1.06 MB)
Peters, B. et al. How does the primate brain combine generative and discriminative computations in vision?. arXiv (2024). at <https://arxiv.org/abs/2401.06005>
Meyers, E. M. NeuroDecodeR: a package for neural decoding in RData_Sheet_1.docx. Frontiers in Neuroinformatics 17, (2024).
Gan, Y., Galanti, T., Poggio, T. & Malach, E. On the Power of Decision Trees in Auto-Regressive Language Modeling. (2024).PDF icon CBMM-Memo-149.pdf (2.11 MB)
Ceola, F., Rosasco, L., Natale, L. & Ceola, F. RESPRECT: Speeding-up Multi-Fingered Grasping With Residual Reinforcement LearningRESPRECT: Speeding-Up Multi-Fingered Grasping With Residual Reinforcement Learning_supp1-3363532.mp4. IEEE Robotics and Automation Letters 9, 3045 - 3052 (2024).
Alfano, P. Didier, Pastore, V. Paolo, Rosasco, L. & Odone, F. Top-tuning: A study on transfer learning for an efficient alternative to fine tuning for image classification with fast kernel methods. Image and Vision Computing 142, 104894 (2024).
Mendoza-Halliday, D. et al. A ubiquitous spectrolaminar motif of local field potential power across the primate cortexAbstract. Nature Neuroscience 27, 547 - 560 (2024).
Gershman, S. J. What have we learned about artificial intelligence from studying the brain?. Biological Cybernetics 118, 1 - 5 (2024).
2023
Xiang, Y., Landy, J., Cushman, F. A., Vélez, N. & Gershman, S. J. Actual and counterfactual effort contribute to responsibility attributions in collaborative tasks. Cognition 241, 105609 (2023).
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Consortium, C. et al. An adversarial collaboration to critically evaluate theories of consciousness. bioRxiv (2023). doi:https://doi.org/10.1101/2023.06.23.546249
O'Connell, T. P. et al. Approaching human 3D shape perception with neurally mappable models. arXiv (2023). at <https://arxiv.org/abs/2308.11300>
Dobs, K., Yuan, J., Martinez, J. & Kanwisher, N. Behavioral signatures of face perception emerge in deep neural networks optimized for face recognition. Proceedings of the National Academy of Sciences 120, (2023).
Wang, C. et al. BrainBERT: Self-supervised representation learning for Intracranial Electrodes. International Conference on Learning Representations (2023). at <https://openreview.net/forum?id=xmcYx_reUn6>PDF icon 985_brainbert_self_supervised_repr.pdf (9.71 MB)
Zador, A. et al. Catalyzing next-generation Artificial Intelligence through NeuroAIAbstract. Nature Communications 14, (2023).
Gershman, S. J. & Ullman, T. D. Causal implicatures from correlational statements. PLOS ONE 18, e0286067 (2023).
Poggio, T. & Magrini, M. Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <https://www.sperling.it/libri/cervelli-menti-algoritmi-marco-magrini>
Kanwisher, N., Gupta, P. & Dobs, K. CNNs reveal the computational implausibility of the expertise hypothesis. iScience 26, 105976 (2023).
Xiang, Y., Vélez, N. & Gershman, S. J. Collaborative decision making is grounded in representations of other people’s competence and effort. Journal of Experimental Psychology: General 152, 1565 - 1579 (2023).

Pages