Publication

Found 171 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is C  [Clear All Filters]
2017
Kool, W., Gershman, S. J. & Cushman, F. A. Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems. Psychol Sci 28, 1321-1333 (2017).
Chen, Z. & Wilson, M. A. Deciphering neural codes of memory during sleep. Trends in Neurosciences (2017).PDF icon proof (2.98 MB)
Lotter, W., Kreiman, G. & Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. ICLR (2017).PDF icon 1605.08104.pdf (2.9 MB)
Lotter, W., Kreiman, G. & Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning. (2017).PDF icon CBMM-Memo-064.pdf (3 MB)
Meyers, E., Riley, M., Qi, X. - L. & Constantinidis, C. Differences in dynamic and static coding within different subdivision of the prefrontal cortex. Society for Neuroscience's Annual Meeting - SfN 2017 (2017). at <http://www.abstractsonline.com/pp8/#!/4376/presentation/4782>
Meyers, E., Liang, A., Katsuki, F. & Constantinidis, C. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex (2017). doi:10.1093/cercor/bhx243
Roig, G., Chen, F., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks for Modeling Human Vision. Vision Sciences Society (2017).
Chen, F., Roig, G., Isik, L., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>PDF icon paper.pdf (963.87 KB)
Telenczuk, B. et al. Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex. Nature Scientific Reports (2017). doi:10.1038/srep40211PDF icon srep40211.pdf (2.53 MB)
Scott, K. M., Chu, J. & Schulz, L. Lookit (Part 2): Assessing the viability of online developmental research, Results from three case studies. Open Mind 1, (2017).PDF icon lookitpart2.pdf (464.02 KB)
Grossman, N. et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 169, 1029 - 1041.e16 (2017).
Vaziri-Pashkam, M., Cormiea, S. & Nakayama, K. Predicting actions from subtle preparatory movements. Cognition 168, 65 - 75 (2017).
Manek, G. et al. Pruning Convolutional Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1707.05455>PDF icon 1707.05455.pdf (143.46 KB)
Cheney, N., Schrimpf, M. & Kreiman, G. On the Robustness of Convolutional Neural Networks to Internal Architecture and Weight Perturbations. (2017).PDF icon CBMM-Memo-065.pdf (687.76 KB)
Cano-Córdoba, F., Sarma, S. & Subirana, B. Theory of Intelligence with Forgetting: Mathematical Theorems Explaining Human Universal Forgetting using “Forgetting Neural Networks”. (2017).PDF icon CBMM-Memo-071.pdf (2.54 MB)
Kool, W., Gershman, S. J. & Cushman, F. A. Thinking fast or slow? A reinforcement-learning approach. Society for Personality and Social Psychology (2017).PDF icon KoolEtAl_SPSP_2017.pdf (670.35 KB)
2016
Linderman, S. W., Johnson, M. J., Wilson, M. A. & Chen, Z. A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation. Journal of Neuroscience Methods 263, (2016).PDF icon Journal of Neuroscience Methods (2.27 MB)
Chen, Z., Linderman, S. W. & Wilson, M. A. Bayesian nonparametric methods for discovering latent structures of rat hippocampal ensemble spikes. IEEE Workshop on Machine Learning for Signal Processing (2016).PDF icon MLSP16 (1).pdf (1.04 MB)
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex [code]. (2016). at <http://klab.tch.harvard.edu/resources/tangetal_stroop_2016.html>
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex [code]. (2016). at <http://klab.tch.harvard.edu/resources/tangetal_stroop_2016.html>
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex [dataset]. (2016). at <http://klab.tch.harvard.edu/resources/tangetal_stroop_2016.html>
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex [dataset]. (2016). at <http://klab.tch.harvard.edu/resources/tangetal_stroop_2016.html>
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex. eLIFE (2016). doi:10.7554/eLife.12352PDF icon Manuscript  (1.83 MB)
Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex. eLIFE (2016). doi:10.7554/eLife.12352PDF icon Manuscript  (1.83 MB)
Lafer-Sousa, R., Conway, B. R. & Kanwisher, N. Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques. Journal of Neuroscience 36, 1682 - 1697 (2016).

Pages