Publication

Export 902 results:
2023
Tuckute, G., Feather, J., Boebinger, D. & McDermott, J. H. Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions. PLOS Biology 21, e3002366 (2023).
Aghajan, Z. M., Kreiman, G. & Fried, I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Reports 42, 113271 (2023).PDF icon 1-s2.0-S2211124723012834-main.pdf (5.33 MB)
Feather, J., Leclerc, G., Mądry, A. & McDermott, J. H. Model metamers reveal divergent invariances between biological and artificial neural networks. Nature Neuroscience (2023). doi:10.1038/s41593-023-01442-0
Schiatti, L. et al. Modeling Visual Impairments with Artificial Neural Networks: a Review. International Conference on Computer Vision 2023 (2023). at <https://openaccess.thecvf.com/content/ICCV2023W/ACVR/html/Schiatti_Modeling_Visual_Impairments_with_Artificial_Neural_Networks_a_Review_ICCVW_2023_paper.html>
Tomov, M. S., Tsividis, P. A., Pouncy, T., Tenenbaum, J. B. & Gershman, S. J. The neural architecture of theory-based reinforcement learning. Neuron 111, 1331 - 1344.e8 (2023).
Kreiman, G. Neural coding: Stimulating cortex to alter visual perception. Current Biology 33, R117 - R118 (2023).
Bigelow, E. J., McCoy, J. P. & Ullman, T. D. Non-commitment in mental imagery. Cognition 238, 105498 (2023).
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. arXiv (2023). at <https://arxiv.org/abs/2301.05223>
Puig, X., Shu, T., Tenenbaum, J. B. & Torralba, A. NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants. 2023 IEEE International Conference on Robotics and Automation (ICRA) (2023). doi:10.1109/ICRA48891.2023.10161352
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/8493e190ff1bbe3837eca821190b61ff-Paper-Conference.pdf>PDF icon NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Rando, M., Molinari, C., Villa, S. & Rosasco, L. An Optimal Structured Zeroth-order Algorithm for Non-smooth Optimization. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/7429f4c1b267cf619f28c4d4f1532f99-Paper-Conference.pdf>
Xiao, W., Sharma, S., Kreiman, G. & Livingstone, M. S. Out of sight, out of mind: Responses in primate ventral visual cortex track individual fixations during natural vision. bioRxiv (2023). doi:10.1101/2023.02.08.527666
Yildirim, I., Siegel, M. H., Soltani, A. A., Chaudhuri, S. Ray & Tenenbaum, J. B. Perception of 3D shape integrates intuitive physics and analysis-by-synthesis. Nature Human Behaviour (2023). doi:10.1038/s41562-023-01759-7
Lagomarsino-Oneto, D. et al. Physics informed machine learning for wind speed prediction. Energy 268, 126628 (2023).
Kosakowski, H. L. et al. Preliminary evidence for selective cortical responses to music in one‐month‐old infants. Developmental Science (2023). doi:10.1111/desc.13387PDF icon Developmental Science - 2023 - Kosakowski - Preliminary evidence for selective cortical responses to music in one‐month‐old.pdf (2.6 MB)
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Robustified ANNs Reveal Wormholes Between Human Category Percepts. arXiv (2023). at <https://arxiv.org/abs/2308.06887>
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Xie, Y., Li, Y. & Rangamani, A. Skip Connections Increase the Capacity of Associative Memories in Variable Binding Mechanisms. (2023).PDF icon CBMM-Memo-142.pdf (1.64 MB)
Bricken, T., Davies, X., Singh, D., Krotov, D. & Kreiman, G. Sparse distributed memory is a continual learner. International Conference on Learning Representations (2023). at <https://openreview.net/forum?id=JknGeelZJpHP>PDF icon 6086_sparse_distributed_memory_is_a.pdf (13.3 MB)
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Strong and Precise Modulation of Human Percepts via Robustified ANNs. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html>
Gershman, S. J. & Cikara, M. Structure learning principles of stereotype change. Psychonomic Bulletin & Review 30, 1273 - 1293 (2023).
Duan, A. et al. A structured prediction approach for robot imitation learning. The International Journal of Robotics Research 43, 113 - 133 (2023).
Yu, C., Burgess, N., Sahani, M. & Gershman, S. J. Successor-Predecessor Intrinsic Exploration. Advances in Neural Information Processing Systems 36 (NeurIPS 2023) (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/hash/e6f2b968c4ee8ba260cd7077e39590dd-Abstract-Conference.html>
Han, Y., Poggio, T. & Cheung, B. System Identification of Neural Systems: If We Got It Right, Would We Know?. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 12430-12444 (2023).PDF icon han23d.pdf (797.48 KB)

Pages