Publication

Found 230 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is L  [Clear All Filters]
2022
Guo, C. et al. Adversarially trained neural representations may already be as robust as corresponding biological neural representations. arXiv (2022).
Guo, C. et al. Adversarially trained neural representations may already be as robust as corresponding biological neural representations. arXiv (2022).
Li, Y. et al. An approximate representation of objects underlies physical reasoning. psyArXiv (2022). at <https://psyarxiv.com/vebu5/>
Liu, S. et al. Dangerous Ground: One-Year-Old Infants are Sensitive to Peril in Other Agents’ Action PlansAbstract. Open Mind 6, 211 - 231 (2022).
Bardon, A., Xiao, W., Ponce, C. R., Livingstone, M. S. & Kreiman, G. Face neurons encode nonsemantic features. Proceedings of the National Academy of Sciences 119, (2022).
Sherman, M. A. et al. Genome-wide mapping of somatic mutation rates uncovers drivers of cancerAbstract. Nature Biotechnology 40, 1634 - 1643 (2022).
Letizia, M. et al. Learning new physics efficiently with nonparametric methodsAbstract. The European Physical Journal C 82, (2022).
Letizia, M. et al. Learning new physics efficiently with nonparametric methodsAbstract. The European Physical Journal C 82, (2022).
Zhang, M. et al. Look twice: A generalist computational model predicts return fixations across tasks and species. PLOS Computational Biology 18, e1010654 (2022).PDF icon journal.pcbi_.1010654.pdf (4.51 MB)
Montagna, F., Noceti, N., Rosasco, L., Zhang, K. & Locatello, F. Scalable Causal Discovery with Score Matching. NeurIPS 2022 (2022). at <https://openreview.net/forum?id=v56PHv_W2A>
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gjata, N. N., Ullman, T. D., Spelke, E. S. & Liu, S. What Could Go Wrong: Adults and Children Calibrate Predictions and Explanations of Others' Actions Based on Relative Reward and Danger. Cognitive Science 46, (2022).

Pages