Publication

Found 283 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is P  [Clear All Filters]
2018
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. (2018).PDF icon CBMM-Memo-076.pdf (772.61 KB)PDF icon CBMM-Memo-076v2.pdf (2.67 MB)
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. (2018).PDF icon CBMM-Memo-092.pdf (1.31 MB)
Schrimpf, M. & Kubilius, J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv preprint (2018). doi:10.1101/407007PDF icon Brain-Score bioRxiv.pdf (789.83 KB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Liao, Q., Miranda, B., Hidary, J. & Poggio, T. Classical generalization bounds are surprisingly tight for Deep Networks. (2018).PDF icon CBMM-Memo-091.pdf (1.43 MB)PDF icon CBMM-Memo-091-v2.pdf (1.88 MB)
Palepu, A. & Kreiman, G. Development of automated interictal spike detector. 40th International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2018 (2018). at <https://embc.embs.org/2018/>
Isik, L., Tacchetti, A. & Poggio, T. A fast, invariant representation for human action in the visual system. Journal of Neurophysiology (2018). doi:https://doi.org/10.1152/jn.00642.2017
Tacchetti, A., Isik, L. & Poggio, T. Invariant Recognition Shapes Neural Representations of Visual Input. Annual Review of Vision Science 4, 403 - 422 (2018).PDF icon annurev-vision-091517-034103.pdf (1.55 MB)
Misra, P., Marconi, A., Peterson, M. F. & Kreiman, G. Minimal memory for details in real life events. Scientific Reports 8, (2018).
Hu, S. et al. Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes. Cell Reports 25, 2635 - 2642.e5 (2018).
Tang, H. et al. Recurrent computations for visual pattern completion. Proceedings of the National Academy of Sciences (2018). doi:10.1073/pnas.1719397115PDF icon 1719397115.full_.pdf (1.1 MB)
Adhya, D. et al. Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. BioRxiv (2018). doi:10.1101/349415
Arend, L. et al. Single units in a deep neural network functionally correspond with neurons in the brain: preliminary results. (2018).PDF icon CBMM-Memo-093.pdf (2.99 MB)
Poggio, T. & Liao, Q. Theory I: Deep networks and the curse of dimensionality. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 02_761-774_00966_Bpast.No_.66-6_28.12.18_K1.pdf (1.18 MB)
Poggio, T. & Liao, Q. Theory II: Deep learning and optimization. Bulletin of the Polish Academy of Sciences: Technical Sciences 66, (2018).PDF icon 03_775-788_00920_Bpast.No_.66-6_31.12.18_K2.pdf (5.43 MB)
Banburski, A. et al. Theory III: Dynamics and Generalization in Deep Networks. (2018).PDF icon Original, intermediate versions are available under request (2.67 MB)PDF icon CBMM Memo 90 v12.pdf (4.74 MB)PDF icon Theory_III_ver44.pdf Update Hessian (4.12 MB)PDF icon Theory_III_ver48 (Updated discussion of convergence to max margin) (2.56 MB)PDF icon fixing errors and sharpening some proofs (2.45 MB)
Powell, L. J. & Spelke, E. S. Third-Party Preferences for Imitators in Preverbal Infants. Open Mind 2, 61 - 71 (2018).
Wang, J. et al. Visual Concepts and Compositional Voting. Annals of Mathematical Sciences and Applications (AMSA) 3, 151–188 (2018).
Wang, J. et al. Visual concepts and compositional voting. (2018).PDF icon CBMM-Memo-087.pdf (3.37 MB)

Pages