Export 643 results:
Hicks, J. M. & McDermott, J. H. Segregation from Noise as Outlier Detection . Association for Research in Otolaryngology (2020).
Isik, L., Mynick, A., Pantazis, D. & Kanwisher, N. The speed of human social interaction perception. NeuroImage 116844 (2020). doi:10.1016/j.neuroimage.2020.116844
Poggio, T. A. Stable Foundations for Learning: a foundational framework for learning theory in both the classical and modern regime. (2020).PDF icon Original file (584.54 KB)PDF icon Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD.  (905.29 KB)PDF icon Edited Appendix on SGD. (909.19 KB)
Schrimpf, M., Sato, F., Sanghavi, S. & DiCarlo, J. J. Temporal information for action recognition only needs to be integrated at a choice level in neural networks and primates . COSYNE (2020).
Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117PDF icon PNASlast.pdf (915.3 KB)
Dasgupta, I., Schulz, E., Tenenbaum, J. B. & Gershman, S. J. A theory of learning to infer. Psychological Review 127, 412 - 441 (2020).
Eisape, T., Levy, R., Tenenabum, J. B. & Zaslavsky, N. Toward human-like object naming in artificial neural systems . International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop (2020).
Dobs, K., Kell, A. J. E., Martinez, J., Cohen, M. & Kanwisher, N. Using task-optimized neural networks to understand why brains have specialized processing for faces . Computational and Systems Neurosciences (2020).
Ben-Yosef, G., Kreiman, G. & Ullman, S. What can human minimal videos tell us about dynamic recognition models?. International Conference on Learning Representations (ICLR 2020) (2020). at <>PDF icon Authors' final version (516.09 KB)
Dobs, K., Kell, A. J. E., Martinez, J., Cohen, M. & Kanwisher, N. Why Are Face and Object Processing Segregated in the Human Brain? Testing Computational Hypotheses with Deep Convolutional Neural Networks . Conference on Cognitive Computational Neuroscience (2020).
Zhang, Y., Marciniak, K. & Freiwald, W. A. Analysis of Macaque Monkeys’ Social and Physical Interaction Processing with Eye tracking Data. The Rockefeller University 2019 Summer Science Research Program (SSRP) (2019).
Mhaskar, H. N. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. (2019).PDF icon CBMM-Memo-098.pdf (687.36 KB)PDF icon CBMM Memo 098 v4 (08/2019) (2.63 MB)
Jozwik, K. M., Lee, H., Kanwisher, N. & DiCarlo, J. J. Are topographic deep convolutional neural networks better models of the ventral visual stream?. Conference on Cognitive Computational Neuroscience (2019).
Muecke, N., Neu, G. & Rosasco, L. Beating SGD Saturation with Tail-Averaging and Minibatching. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9422-beating-sgd-saturation-with-tail-averaging-and-minibatching.pdf (389.35 KB)
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations, (ICLR 2019) (2019).PDF icon gk7779.pdf (721.53 KB)
Adler, A. & Wax, M. Blind Constant Modulus Multiuser Detection via Low-Rank Approximation. IEEE Signal Processing Letters 1 - 1 (2019). doi:10.1109/LSP.9710.1109/LSP.2019.2918001
Adler, A., Wax, M. & Pantazis, D. Brain Signals Localization by Alternating Projections. arXiv (2019).PDF icon CBMM-Memo-099.pdf (421.67 KB)
Kubilius, J. et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 2019-10-28 NeurIPS-camera_ready.pdf (1.88 MB)
Kryven, M., Niemi, L., Paul, L. & Tenenbaum, J. B. Choosing a Transformative Experience . Cognitive Sciences Society (2019).
Adler, A. & Wax, M. Constant modulus algorithms via low-rank approximation. Signal Processing 160, 263 - 270 (2019).
Lewis, O. & Hermann, K. Data for free: Fewer-shot algorithm learning with parametricity data augmentation. ICLR 2019 (2019).
Kuo, Y. - L., Katz, B. & Barbu, A. Deep Compositional Robotic Planners that Follow Natural Language Commands. Workshop on Visually Grounded Interaction and Language (ViGIL) at the Thirty-third Annual Conference on Neural Information Processing Systems (NeurIPS), (2019). at <>
Kell, A. J. E. & McDermott, J. H. Deep neural network models of sensory systems: windows onto the role of task constraints. Current Opinion in Neurobiology 55, 121 - 132 (2019).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Barbu, A., Banda, D. & Katz, B. Deep video-to-video transformations for accessibility with an application to photosensitivity. Pattern Recognition Letters (2019). doi:10.1016/j.patrec.2019.01.019