Export 856 results:
Rockmore, D. The Trolley Problem []. (2016). at <>PDF icon The Trolley Problem.pdf (343.3 KB)
Poggio, T. & Meyers, E. Turing++ Questions: A Test for the Science of (Human) Intelligence. AI Magazine 37 , 73-77 (2016).PDF icon Turing_Plus_Questions.pdf (424.91 KB)
Chen, Z., Grosmark, A. D., Penagos, H. & Wilson, M. A. Uncovering representations of sleep-associated hippocampal ensemble spike activity. Scientific Reports 6, (2016).
Gerstenberg, T. & Tenenbaum, J. B. Understanding "almost": Empirical and computational studies of near misses. 38th Annual Meeting of the Cognitive Science Society (2016).PDF icon Understanding almost (Gerstenberg, Tenenbaum, 2016).pdf (4.08 MB)
Berzak, Y. et al. Universal Dependencies for Learner English. (2016).PDF icon memo-52_rev1.pdf (472.67 KB)
Lotter, W., Kreiman, G. & Cox, D. Unsupervised Learning of Visual Structure using Predictive Generative Networks. International Conference on Learning Representations (ICLR) (2016). at <>
Hartshorne, J. K. VerbCorner: Testing theories of argument structure through crowdsourcing. Workshop on Events in Language (2016).PDF icon VerbCorner_EventsInLanguage.pdf (1.14 MB)
Leibo, J. Z., Liao, Q., Freiwald, W. A., Anselmi, F. & Poggio, T. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016).PDF icon faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
Rosenfeld, A. & Ullman, S. Visual Concept Recognition and Localization via Iterative Introspection. . Asian Conference on Computer Vision (2016).PDF icon Focusing on parts of interest  (910.14 KB)
Poggio, T. & Anselmi, F. Visual Cortex and Deep Networks: Learning Invariant Representations. 136 (The MIT Press, 2016). at <>
Owens, A. et al. Visually indicated sounds. Conference on Computer Vision and Pattern Recognition (2016).PDF icon Owens_etal_2016_visually_indicated_sounds_CVPR.pdf (7.57 MB)
Spokes, A. C., Howard, R., Mehr, S. A. & Krasnow, M. M. Welfare-tradeoff ratios in children. Human Behavior and Evolution Society (2016).
Kool, W., Cushman, F. A. & Gershman, S. J. When Does Model-Based Control Pay Off?. PLoS Comput Biol 12, e1005090 (2016).PDF icon KoolEtAl_PLOS_CB.PDF (5.85 MB)
Dasgupta, I., Schulz, E. & Gershman, S. J. Where do hypotheses come from?. (2016).PDF icon CBMM-Memo-056-v2.pdf (733.35 KB)
Dillon, M. R. & Spelke, E. S. Young Children’s Use of Surface and Object Information in Drawings of Everyday Scenes. Child Development (2016). doi:10.1111/cdev.12658
Xia, F., Wang, P., Chen, L. -chieh & Yuille, A. Zoom better to see clearer: Human and object parsing with hierarchical auto-zoom net. ECCV (2016).PDF icon auto-zoom_net.pdf (5.77 MB)
Xia, F., Wang, P., Chen, L. -chieh & Yuille, A. Zoom Better to See Clearer: Human Part Segmentation with Auto Zoom Net. ECCV (2016).
Atabaki, A., Marciniak, K., Dicke, P. W. & Thier, P. Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting. Vision Res 112, 68-82 (2015).PDF icon Atabaki Marciniak Dicke Thier 2015 Vis Res Assesing the precision of gaze following using a stereoscopic 3D virtual reality setting.pdf (2.52 MB)
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nature Neuroscience 18, 1844 (2015).PDF icon Preprint (40.28 MB)
Hartshorne, J. K. The causes and consequences explicit in verbs. Language, Cognition and Neuroscience 30, 716-734 (2015).
Jara-Ettinger, J., Gweon, H., Tenenbaum, J. B. & Schulz, L. Children’s understanding of the costs and rewards underlying rational action. Cognition 140, 14–23 (2015).PDF icon CM_inPress.pdf (438.5 KB)
Dillon, M. R., Pires, A. C., Hyde, D. C. & Spelke, E. S. Children's expectations about training the approximate number system. British Journal of Developmental Psychology 33, (2015).
Yuille, A. & Mottaghi, R. Complexity of Representation and Inference in Compositional Models with Part Sharing. (2015).PDF icon CBMM Memo 031.pdf (1.14 MB)
Yu, H., Siddharth, N., Barbu, A. & Siskind, J. Mark. A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video. (2015). doi:doi:10.1613/jair.4556
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349, 273-278 (2015).