Publication

Export 902 results:
Filters: Filter is   [Clear All Filters]
2015
Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332-1338 (2015).
Tsividis, P., Tenenbaum, J. B. & Schulz, L. Hypothesis-Space Constraints in Causal Learning. Annual Meeting of the Cognitive Science Society (CogSci) (2015). at <https://mindmodeling.org/cogsci2015/papers/0418/index.html>PDF icon hypothesis_space_constraints (1).pdf (1.54 MB)
Magid, R. Imagination and the generation of new ideas. Cognitive Development 34, 99–110 (2015).PDF icon Imagination and the generation of new ideas (266.63 KB)
Dehaene-Lambertz, G. & Spelke, E. S. The Infancy of the Human Brain. Neuron 88, 93 - 109 (2015).
Powell, L. J. & Spelke, E. S. Infants’ Categorization of Social Actions. Cognitive Development Society (CDS) (2015).
Spokes, A. C. Infants’ Reasoning about Affiliation and Caregiving. Cognitive Development Society (CDS) Biennial Meeting (2015).
Spokes, A. C. Infants’ Reasoning about Affiliation and Caregiving. Cognitive Development Society (CDS) | More on Development workshop (2015).
Dillon, M. R., Izard, V. & Spelke, E. S. Infants’ sensitivity to shape changes. Cognitive Development Society Pre-Conference on the Development of Spatial Thinking (2015).
Linderman, S. W., Adams, R. & Pillow, J. Inferring structured connectivity from spike trains under negative-binomial generalized linear models. (2015).PDF icon cosyne2015a.pdf (384.83 KB)
Tsividis, P., Gershman, S. J., Tenenbaum, J. B. & Schulz, L. Information Selection in Noisy Environments with Large Action Spaces. 9th Biennial Conference of the Cognitive Development Society Columbus, OH, (2015).
Meyers, E., Borzello, M., Freiwald, W. A. & Tsao, D. Intelligent Information Loss: The Coding of Facial Identity, Head Pose, and Non-Face Information in the Macaque Face Patch System. The Journal of Neuroscience 35, (2015).
Anselmi, F., Rosasco, L. & Poggio, T. On Invariance and Selectivity in Representation Learning. (2015).PDF icon CBMM Memo No. 029 (812.07 KB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. PLOS Computational Biology 11, e1004390 (2015).PDF icon journal.pcbi_.1004390.pdf (2.04 MB)
Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex. (2015).Binary Data modularity_dataset_ver1.tar.gz (36.14 MB)
Isik, L., Tacchetti, A. & Poggio, T. Invariant representations for action recognition in the visual system. Computational and Systems Neuroscience (2015).
Tacchetti, A., Isik, L. & Poggio, T. Invariant representations for action recognition in the visual system. Vision Sciences Society 15, (2015).
Dillon, M. R., Izard, V. & Spelke, E. S. Isolating angle in infants' detection of shape. (2015).PDF icon SRCD_2015_Dillonetal.pdf (5.01 MB)
Poggio, T., Anselmi, F. & Rosasco, L. I-theory on depth vs width: hierarchical function composition. (2015).PDF icon cbmm_memo_041.pdf (1.18 MB)
Mao, J. et al. Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images. International Conference of Computer Vision (2015). at <www.stat.ucla.edu/~junhua.mao/projects/child_learning.html>PDF icon child_learning_iccv2015.pdf (1.16 MB)
Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M. & Poggio, T. Learning with a Wasserstein Loss. Advances in Neural Information Processing Systems (NIPS 2015) 28 (2015). at <http://arxiv.org/abs/1506.05439>PDF icon Learning with a Wasserstein Loss_1506.05439v2.pdf (2.57 MB)
Mroueh, Y., Voinea, S. & Poggio, T. Learning with Group Invariant Features: A Kernel Perspective. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5798-learning-with-group-invariant-features-a-kernel-perspective>PDF icon LearningInvarianceKernel_NIPS2015.pdf (292.18 KB)
Rosasco, L. & Villa, S. Learning with incremental iterative regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/6015-learning-with-incremental-iterative-regularization>PDF icon Learning with Incremental Iterative Regularization_1405.0042v2.pdf (504.66 KB)
Rudi, A., Camoriano, R. & Rosasco, L. Less is More: Nyström Computational Regularization. NIPS 2015 (2015). at <https://papers.nips.cc/paper/5936-less-is-more-nystrom-computational-regularization>PDF icon Less is More- Nystr ̈om Computational Regularization_1507.04717v4.pdf (287.14 KB)
Koch, C. Lust and the Turing test [Nature] . (2015). at <http://blogs.nature.com/aviewfromthebridge/2015/05/27/lust-and-the-turing-test/>PDF icon Lust and the Turing Test.pdf (203.1 KB)
Ellis, K. & Lewis, O. Metareasoning in Symbolic Domains. NIPS Workshop | Bounded Optimality and Rational Metareasoning (2015). at <https://sites.google.com/site/boundedoptimalityworkshop/>PDF icon metareasoning_submitted.pdf (491.95 KB)

Pages