Publication

Export 902 results:
2021
Traer, J., Norman-Haignere, S. & McDermott, J. H. Causal inference in environmental sound recognition. Cognition (2021). doi:10.1016/j.cognition.2021.104627
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Kar, K., Schrimpf, M., Schmidt, K. & DiCarlo, J. J. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision 21, (2021).
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Baidya, A., Dapello, J., DiCarlo, J. J. & Marques, T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/ScheduleMultitrack?event=41268>
Hu, J., Zaslavsky, N. & Levy, R. Competition from novel features drives scalar inferences in reference games. Proceedings of the Annual Meeting of the Cognitive Science Society 43, (2021).
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional Networks Enable Systematic Generalization for Grounded Language Understanding. (2021).PDF icon CBMM-Memo-129.pdf (1.2 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional RL Agents That Follow Language Commands in Temporal Logic. Frontiers in Robotics and AI 8, (2021).PDF icon frobt-08-689550.pdf (1.57 MB)
Kuo, Y. - L., Barbu, A. & Katz, B. Compositional RL Agents That Follow Language Commands in Temporal Logic. (2021).PDF icon CBMM-Memo-127.pdf (2.12 MB)
N. Murty, A. Ratan, Bashivan, P., Abate, A., DiCarlo, J. J. & Kanwisher, N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications 12, (2021).PDF icon s41467-021-25409-6.pdf (6.47 MB)
Xiang, Y., Graeber, T., Enke, B. & Gershman, S. J. Confidence and central tendency in perceptual judgment. Attention, Perception, & Psychophysics 83, 3024 - 3034 (2021).
Adler, A., Araya-Polo, M. & Poggio, T. Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows. IEEE Signal Processing Magazine 38, 89 - 119 (2021).
Saddler, M. R., Gonzalez, R. & McDermott, J. H. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nature Communications 12, (2021).PDF icon s41467-021-27366-6.pdf (5.25 MB)
Banburski, A., De La Torre, F., Pant, N., Shastri, I. & Poggio, T. Distribution of Classification Margins: Are All Data Equal?. (2021).PDF icon CBMM Memo 115.pdf (9.56 MB)PDF icon arXiv version (23.05 MB)
Xu, M. et al. Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss. (2021).PDF icon v1.0 (4.61 MB)PDF icon v1.4corrections to generalization section (5.85 MB)PDF icon v1.7Small edits (22.65 MB)
Kunhardt, O., Deza, A. & Poggio, T. The Effects of Image Distribution and Task on Adversarial Robustness. (2021).PDF icon CBMM_Memo_116.pdf (5.44 MB)
Griffiths, T. L. & Zaslavsky, N. Encyclopedia of Color Science and TechnologyBayesian Approaches to Color Category Learning. 1 - 5 (Springer Berlin Heidelberg, 2021). doi:10.1007/978-3-642-27851-8
Gant, J., Banburski, A., Deza, A. & Poggio, T. Evaluating the Adversarial Robustness of a Foveated Texture Transform Module in a CNN. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/Schedule?showEvent=21868>
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
Landi, S. M., Viswanathan, P., Serene, S. & Freiwald, W. A. A fast link between face perception and memory in the temporal pole. Science eabi6671 (2021). doi:10.1126/science.abi6671
Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron 109, 164 - 176.e5 (2021).
McNamee, D., Stachenfeld, K., Botvinick, M. M. & Gershman, S. J. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nature Neuroscience (2021). doi:10.1038/s41593-021-00831-7
Casper, S. et al. Frivolous Units: Wider Networks Are Not Really That Wide. AAAI 2021 (2021). at <https://dblp.org/rec/conf/aaai/CasperBDGSVK21.html>PDF icon 1912.04783.pdf (6.69 MB)
Poggio, T. From Associative Memories to Powerful Machines. (2021).PDF icon v1.0 (1.01 MB)PDF icon v1.3Section added August 6 on self attention (3.9 MB)
Poggio, T. From Marr’s Vision to the Problem of Human Intelligence. (2021).PDF icon CBMM-Memo-118.pdf (362.19 KB)

Pages