Publication

Export 904 results:
2022
Houlihan, S. Dae, Ong, D., Cusimano, M. & Saxe, R. Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind. Proceedings of the Annual Conference of the Cognitive Science Society 44, 854-861 (2022).PDF icon Houlihan 2022 Proceedings of the 44th Annual Conference of the Cognitive Science Society.pdf (687.98 KB)
Anselmi, F. & Poggio, T. Representation Learning in Sensory Cortex: a theory. IEEE Access 1 - 1 (2022). doi:10.1109/ACCESS.2022.3208603PDF icon Representation_Learning_in_Sensory_Cortex_a_theory.pdf (1.17 MB)
Casper, S., Nadeau, M., Hadfield-Menell, D. & Kreiman, G. Robust Feature-Level Adversaries are Interpretability Tools. NeurIPS (2022). at <https://openreview.net/forum?id=lQ--doSB2o>PDF icon 8789_robust_feature_level_adversari.pdf (3.79 MB)
Montagna, F., Noceti, N., Rosasco, L., Zhang, K. & Locatello, F. Scalable Causal Discovery with Score Matching. NeurIPS 2022 (2022). at <https://openreview.net/forum?id=v56PHv_W2A>
Galanti, T. & Poggio, T. SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. (2022).PDF icon Implicit Rank Minimization.pdf (1.76 MB)
Cheng, E., Kuo, Y. - L., Cases, I., Katz, B. & Barbu, A. Spontaneous sign emergence in humans and machines through an embodied communication game. JCoLE Workshop (2022).
Shaham, N., Chandra, J., Kreiman, G. & Sompolinsky, H. Stochastic consolidation of lifelong memoryAbstract. Scientific Reports 12, (2022).PDF icon s41598-022-16407-9.pdf (2.54 MB)
Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B. & O’Donnell, T. J. Synthesizing theories of human language with Bayesian program inductionAbstract. Nature Communications 13, (2022).PDF icon s41467-022-32012-w.pdf (2.19 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Xiao, Y. et al. Task-specific neural processes underlying conflict resolution during cognitive control. BioRxiv (2022). doi:10.1101/2022.01.16.476535 PDF icon 2022.01.16.476535v1.full_.pdf (22.96 MB)
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Woo, B. M. & Spelke, E. S. Toddlers’ social evaluations of agents who act on false beliefs. Developmental Science 26, (2022).
Tazi, Y., Berger, M. & Freiwald, W. A. Towards an objective characterization of an individual's facial movements using Self-Supervised Person-Specific-Models. arXiv (2022). at <https://arxiv.org/abs/2211.08279>
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)PDF icon version 2 (3/22/2023) (1.33 MB)
Rangamani, A. & Xie, Y. Understanding the Role of Recurrent Connections in Assembly Calculus. (2022).PDF icon CBMM-Memo-137.pdf (1.49 MB)
Kamps, F. S., Richardson, H., N. Murty, A. Ratan, Kanwisher, N. & Saxe, R. Using child‐friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years. Human Brain Mapping (2022). doi:10.1002/hbm.25815
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Izard, V., Pica, P. & Spelke, E. S. Visual foundations of Euclidean geometry. Cognitive Psychology 136, 101494 (2022).
Bill, J., Gershman, S. J. & Drugowitsch, J. Visual motion perception as online hierarchical inference. Nature Communications 13, (2022).
Spelke, E. S. What Babies KnowAbstractCore KnowledgeAbstract. 190 - C5.T1 (Oxford University PressNew York, 2022). doi:10.1093/oso/9780190618247.001.000110.1093/oso/9780190618247.003.0005
Gjata, N. N., Ullman, T. D., Spelke, E. S. & Liu, S. What Could Go Wrong: Adults and Children Calibrate Predictions and Explanations of Others' Actions Based on Relative Reward and Danger. Cognitive Science 46, (2022).
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).

Pages