Publication

Export 40 results:
Filters: Author is Qianli Liao  [Clear All Filters]
2017
Chandrasekhar, V. et al. Compression of Deep Neural Networks for Image Instance Retrieval. (2017). at <https://arxiv.org/abs/1701.04923>PDF icon 1701.04923.pdf (614.33 KB)
Zhang, C. et al. Musings on Deep Learning: Properties of SGD. (2017).PDF icon CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)PDF icon CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)PDF icon CBMM Memo 067 v4 (revised 12/26/2017) (5.57 MB)
Liao, Q. & Poggio, T. Object-Oriented Deep Learning. (2017).PDF icon CBMM-Memo-070.pdf (963.54 KB)
Poggio, T. & Liao, Q. Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).PDF icon CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
Zhang, C. et al. Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).PDF icon CBMM-Memo-072.pdf (3.66 MB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Leibo, J. Z., Liao, Q., Anselmi, F., Freiwald, W. A. & Poggio, T. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation. Current Biology 27, 1-6 (2017).
Mhaskar, H., Liao, Q. & Poggio, T. When and Why Are Deep Networks Better Than Shallow Ones?. AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence (2017).
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2PDF icon art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)

Pages