Export 806 results:
Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLOS ONE 18, e0268577 (2023).PDF icon journal.pone_.0268577.pdf (1.99 MB)
Wang, C. et al. BrainBERT: Self-supervised representation learning for Intracranial Electrodes. International Conference on Learning Representations (2023). at <>PDF icon 985_brainbert_self_supervised_repr.pdf (9.71 MB)
Xiao, Y. et al. Cross-task specificity and within-task invariance of cognitive control processes. Cell Reports 42, 111919 (2023).PDF icon PIIS2211124722018174.pdf (3.97 MB)
Zhang, Y. et al. Decoding of human identity by computer vision and neuronal vision. Scientific Reports 13, (2023).PDF icon s41598-022-26946-w.pdf (1.88 MB)
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers Trained with the Square Loss: Normalization, Low Rank, Neural Collapse, and Generalization Bounds. Research 6, (2023).PDF icon research.0024.pdf (5.19 MB)
Rangamani, A., Lindegaard, M., Galanti, T. & Poggio, T. Feature learning in deep classifiers through Intermediate Neural Collapse. (2023).PDF icon Feature_Learning_memo.pdf (2.16 MB)
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, minimizing the norm of the ERM solution maximizes stability. Analysis and Applications 21, 193 - 215 (2023).
Srinivasan, R. Francesco et al. Forward learning with top-down feedback: empirical and analytical characterization. arXiv (2023). at <>
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Kosakowski, H. L. et al. Preliminary evidence for selective cortical responses to music in one‐month‐old infants. Developmental Science (2023). doi:10.1111/desc.13387PDF icon Developmental Science - 2023 - Kosakowski - Preliminary evidence for selective cortical responses to music in one‐month‐old.pdf (2.6 MB)
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Bricken, T., Davies, X., Singh, D., Krotov, D. & Kreiman, G. Sparse distributed memory is a continual learner. International Conference on Learning Representations (2023). at <>PDF icon 6086_sparse_distributed_memory_is_a.pdf (13.3 MB)
Nilchian, P., Wilson, M. A. & Sanders, H. Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments. The Journal of Neuroscience 42, 5268 - 5280 (2022).PDF icon 5268.full_.pdf (2.97 MB)
Li, Y. et al. An approximate representation of objects underlies physical reasoning. psyArXiv (2022). at <>
Dobs, K., Martinez-Trujillo, J., Kell, A. J. E. & Kanwisher, N. Brain-like functional specialization emerges spontaneously in deep neural networks. Science Advances 8, (2022).
Kar, K. A computational probe into the behavioral and neural markers of atypical facial emotion processing in autism. The Journal of Neuroscience JN-RM-2229-21 (2022). doi:10.1523/JNEUROSCI.2229-21.2022
Francl, A. & McDermott, J. H. Deep neural network models of sound localization reveal how perception is adapted to real-world environments. Nature Human Behavior 6, 111–133 (2022).PDF icon s41562-021-01244-z.pdf (7.22 MB)
Armendariz, M., Xiao, W., Vinken, K. & Kreiman, G. Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology 1 - 3 (2022). doi:10.1080/02643294.2022.2041588
Thomas, A. J., Woo, B., Nettle, D., Spelke, E. S. & Saxe, R. Early concepts of intimacy: Young humans use saliva sharing to infer close relationships. Science 375, 311 - 315 (2022).
Sikarwar, A. & Kreiman, G. On the Efficacy of Co-Attention Transformer Layers in Visual Question Answering. arXiv (2022). doi:10.48550/arXiv.2201.03965PDF icon On_the_Efficacy_of_Co-Attention_Transformer_Layers.pdf (35.54 MB)
Dellaferrera, G. & Kreiman, G. Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass. Proceedings of the 39th International Conference on Machine Learning, PMLR 162, 4937-4955 (2022).PDF icon dellaferrera22a.pdf (909.91 KB)
Becker, L. A. et al. Eszopiclone and Zolpidem Produce Opposite Effects on Hippocampal Ripple DensityDataSheet1.docx. Frontiers in Pharmacology 12, (2022).
Bardon, A., Xiao, W., Ponce, C. R., Livingstone, M. S. & Kreiman, G. Face neurons encode nonsemantic features. Proceedings of the National Academy of Sciences 119, (2022).
Harrington, A. & Deza, A. Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks. International Conference on Learning Representations (ICLR) (2022). at <>