Publication

Found 262 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is B  [Clear All Filters]
2022
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Tazi, Y., Berger, M. & Freiwald, W. A. Towards an objective characterization of an individual's facial movements using Self-Supervised Person-Specific-Models. arXiv (2022). at <https://arxiv.org/abs/2211.08279>
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)PDF icon version 2 (3/22/2023) (1.33 MB)
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Bill, J., Gershman, S. J. & Drugowitsch, J. Visual motion perception as online hierarchical inference. Nature Communications 13, (2022).
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
2021
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Baidya, A., Dapello, J., DiCarlo, J. J. & Marques, T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/ScheduleMultitrack?event=41268>
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional Networks Enable Systematic Generalization for Grounded Language Understanding. (2021).PDF icon CBMM-Memo-129.pdf (1.2 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Compositional RL Agents That Follow Language Commands in Temporal Logic. Frontiers in Robotics and AI 8, (2021).PDF icon frobt-08-689550.pdf (1.57 MB)
Kuo, Y. - L., Barbu, A. & Katz, B. Compositional RL Agents That Follow Language Commands in Temporal Logic. (2021).PDF icon CBMM-Memo-127.pdf (2.12 MB)
N. Murty, A. Ratan, Bashivan, P., Abate, A., DiCarlo, J. J. & Kanwisher, N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications 12, (2021).PDF icon s41467-021-25409-6.pdf (6.47 MB)
Banburski, A., De La Torre, F., Pant, N., Shastri, I. & Poggio, T. Distribution of Classification Margins: Are All Data Equal?. (2021).PDF icon CBMM Memo 115.pdf (9.56 MB)PDF icon arXiv version (23.05 MB)
Xu, M. et al. Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss. (2021).PDF icon v1.0 (4.61 MB)PDF icon v1.4corrections to generalization section (5.85 MB)PDF icon v1.7Small edits (22.65 MB)
Gant, J., Banburski, A., Deza, A. & Poggio, T. Evaluating the Adversarial Robustness of a Foveated Texture Transform Module in a CNN. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/Schedule?showEvent=21868>
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature (2021). doi:10.1038/s41586-021-03535-x
McNamee, D., Stachenfeld, K., Botvinick, M. M. & Gershman, S. J. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nature Neuroscience (2021). doi:10.1038/s41593-021-00831-7

Pages