Publication

Found 332 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is M  [Clear All Filters]
2019
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry 85, 425 - 433 (2019).
Kell, A. J. E. & McDermott, J. H. Invariance to background noise as a signature of non-primary auditory cortex. Nature Communications 10, (2019).
McCoy, J. P. & Ullman, T. Judgments of effort for magical violations of intuitive physics. PLOS ONE 14, e0217513 (2019).
Jozwik, K. M., Lee, M., Marques, T., Schrimpf, M. & Bashivan, P. Large-scale hyperparameter search for predicting human brain responses in the Algonauts challenge. The Algonauts Project: Explaining the Human Visual Brain Workshop 2019 (2019). doi:10.1101/689844
Marques, T. & DiCarlo, J. J. A meta-analysis of ANNs as models of primate V1 . Bernstein (2019).
Feather, J., Durango, A., Gonzalez, R. & McDermott, J. H. Metamers of neural networks reveal divergence from human perceptual systems. NIPS 2019 (2019). at <https://papers.nips.cc/paper/9198-metamers-of-neural-networks-reveal-divergence-from-human-perceptual-systems>PDF icon Feather_etal_2019_NeurIPS_metamers.pdf (4.7 MB)
Smith, K. A. et al. Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019). at <http: //physadept.csail.mit.edu/>PDF icon ADEPT_NeurIPS.pdf (11.07 MB)
Barbu, A. et al. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9142-objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf (16.31 MB)
Brewer, K., Mittman, B., Kominsky, J. & Henes, J. Open Source Subject Database Project (OSSDP). (2019).
Liu, S., McCoy, J. P. & Ullman, T. D. People's perceptions of others’ risk preferences. Cognitive Science Society (2019).PDF icon risk_cogsci_2019_final.pdf (899.8 KB)
Traer, J., Cusimano, M. & McDermott, J. H. A perceptually inspired generative model of rigid-body contact sounds. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19) (2019).
Cusimano, M., Traer, J. & McDermott, J. H. Scrape, rub, and roll: causal inference in the perception of sustained contact sounds . Cognitive Science (2019).
Patzelt, E. H., Kool, W., Millner, A. J. & Gershman, S. J. The transdiagnostic structure of mental effort avoidance. Scientific Reports 9, (2019).
Jacoby, N. et al. Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing. Current Biology (2019). doi:10.1016/j.cub.2019.08.020
Jacoby, N. et al. Universal and Non-universal Features of Musical Pitch Perception Revealed by Singing. Current Biology (2019). doi:10.1016/j.cub.2019.08.020
Stephenson, C. et al. Untangling in Invariant Speech Recognition. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 9583-untangling-in-invariant-speech-recognition.pdf (2.09 MB)
Han, C., Mao, J., Gan, C., Tenenbaum, J. B. & Wu, J. Visual Concept-Metaconcept Learning. Neural Information Processing Systems (NeurIPS 2019) (2019).PDF icon 8745-visual-concept-metaconcept-learning.pdf (1.92 MB)
Banburski, A. et al. Weight and Batch Normalization implement Classical Generalization Bounds . ICML (2019).

Pages