Publication

Export 793 results:
2021
Du, Y., Smith, K. A., Ullman, T., Tenenbaum, J. B. & Wu, J. Unsupervised Discovery of 3D Physical Objects. International Conference on Learning Representations (2021). at <https://openreview.net/forum?id=lf7st0bJIA5>
Wang, B., Mayo, D., Deza, A., Barbu, A. & Conwell, C. On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation. Shared Visual Representations in Human and Machine Intelligence (SVRHM) Workshop at NeurIPS (2021). at <https://openreview.net/forum?id=Rpazl253IHb>
Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nature Computational Science 1, 678 - 685 (2021).PDF icon s43588-021-00130-y.pdf (1.96 MB)
Gupta, S. Kant, Zhang, M., WU, C. H. I. A. - C. H. I. E. N., Wolfe, J. & Kreiman, G. Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/Schedule?showEvent=28848>PDF icon gk8091.pdf (2.47 MB)
Pouncy, T., Tsividis, P. & Gershman, S. J. What Is the Model in Model‐Based Planning?. Cognitive Science 45, (2021).
Li, C. & Deza, A. What Matters In Branch Specialization? Using a Toy Task to Make Predictions. Shared Visual Representations in Human and Machine Intelligence (SVRHM) Workshop at NeurIPS (2021). at <https://openreview.net/forum?id=0kPS1i6wict>
Bomatter, P. et al. When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes. International Conference on Computer Vision (ICCV) (2021). doi:10.1109/iccv48922.2021.00032PDF icon Bomatter_When_Pigs_Fly_Contextual_Reasoning_in_Synthetic_and_Natural_Scenes_ICCV_2021_paper.pdf (3.24 MB)
2020
Kim, D. et al. The ability to predict actions of others from distributed cues is still developing in children. PsyArXiv Preprints (2020). doi:10.31234/osf.io/pu3tfPDF icon Action_prediction_in_children.pdf (427.84 KB)
Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nature Neuroscience 23, 1597 - 1605 (2020).PDF icon s41593-020-00742-z.pdf (5.47 MB)
Udrescu, S. - M. et al. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020).PDF icon 2006.10782.pdf (2.62 MB)
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121, 229 - 241 (2020).
Dasgupta, I., Guo, D., Gershman, S. J. & Goodman, N. D. Analyzing Machine‐Learned Representations: A Natural Language Case Study. Cognitive Science 44, (2020).
Ullman, T. D. & Tenenbaum, J. B. Bayesian Models of Conceptual Development: Learning as Building Models of the World. Annual Review of Developmental Psychology 2, 533 - 558 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Annals of the New York Academy of Sciences 1464, 222 - 241 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N.Y. Acad. Sci. | Special Issue: The Year in Cognitive Neuroscience 1464, 222-241 (2020).PDF icon gk7812.pdf (1.93 MB)
Reddy, M. Vuyyuru, Banburski, A., Pant, N. & Poggio, T. Biologically Inspired Mechanisms for Adversarial Robustness. (2020).PDF icon CBMM_Memo_110.pdf (3.14 MB)
Jacquot, V., Ying, J. & Kreiman, G. Can Deep Learning Recognize Subtle Human Activities?. CVPR 2020 (2020).
Shalev-Shwartz, S. & Shashua, A. Can we Contain Covid-19 without Locking-down the Economy?. (2020).PDF icon CBMM Memo 104 v4 (Apr. 6, 2020) (418.25 KB)PDF icon CBMM Memo 104 v3 (Apr. 1, 2020) (452.94 KB)PDF icon CBMM Memo 104 v2 (Mar. 28, 2020) (427.39 KB)PDF icon CBMM-Memo-104.pdf (425.12 KB)
Madan, S. et al. On the Capability of Neural Networks to Generalize to Unseen Category-Pose Combinations. (2020).PDF icon CBMM-Memo-111.pdf (9.76 MB)
Schulz, E., Quiroga, F. & Gershman, S. J. Communicating Compositional Patterns. Open Mind 4, 25 - 39 (2020).
Poggio, T., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Deep compositional robotic planners that follow natural language commands. (2020).PDF icon CBMM-Memo-124.pdf (1.03 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Deep compositional robotic planners that follow natural language commands . International Conference on Robotics and Automation (ICRA) (2020).
Villalobos, K. M. et al. Do Neural Networks for Segmentation Understand Insideness?. (2020).PDF icon CBMM-Memo-105.pdf (4.63 MB)PDF icon CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)PDF icon CBMM Memo 105 v3 (January 25, 2022) (8.33 MB)

Pages