Publication

Export 898 results:
Filters: Filter is   [Clear All Filters]
2020
Poggio, T., Liao, Q. & Banburski, A. Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).PDF icon s41467-020-14663-9.pdf (431.68 KB)
Malkin, E., Deza, A. & Poggio, T. CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>PDF icon Foveated_Drone_SVRHM_2020.pdf (13.44 MB)PDF icon v1 (12/15/2020) (14.7 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Deep compositional robotic planners that follow natural language commands. (2020).PDF icon CBMM-Memo-124.pdf (1.03 MB)
Kuo, Y. - L., Katz, B. & Barbu, A. Deep compositional robotic planners that follow natural language commands . International Conference on Robotics and Automation (ICRA) (2020).
Villalobos, K. M. et al. Do Neural Networks for Segmentation Understand Insideness?. (2020).PDF icon CBMM-Memo-105.pdf (4.63 MB)PDF icon CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)PDF icon CBMM Memo 105 v3 (January 25, 2022) (8.33 MB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Yildirim, I., Belledonne, M., Freiwald, W. A. & Tenenbaum, J. B. Efficient inverse graphics in biological face processing. Science Advances 6, eaax5979 (2020).PDF icon eaax5979.full_.pdf (3.22 MB)
Zaslavsky, N., Hu, J. & Levy, R. Emergence of Pragmatic Reasoning From Least-Effort Optimization . 13th International Conference on the Evolution of Language (EvoLang) (2020).
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020). doi:10.1109/IROS45743.2020.9341325
Kuo, Y. - L., Katz, B. & Barbu, A. Encoding formulas as deep networks: Reinforcement learning for zero-shot execution of LTL formulas. (2020).PDF icon CBMM-Memo-125.pdf (2.12 MB)
Kar, K. & DiCarlo, J. J. Evidence that recurrent pathways between the prefrontal and inferior temporal cortex is critical during core object recognition . COSYNE (2020).
Shalev-Shwartz, S. & Shashua, A. An Exit Strategy from the Covid-19 Lockdown based on Risk-sensitive Resource Allocation. (2020).PDF icon CBMM-Memo-106.pdf (431.13 KB)
Poggio, T. & Liao, Q. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. arXiv (2020). at <https://arxiv.org/abs/2101.00072>
Schaeffer, D. J. et al. Face selective patches in marmoset frontal cortexAbstract. Nature Communications 11, (2020).
Kar, K. & DiCarlo, J. J. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron (2020). doi:10.1016/j.neuron.2020.09.035PDF icon PIIS0896627320307595.pdf (3.92 MB)
Smith, K. A. et al. The fine structure of surprise in intuitive physics: when, why, and how much?. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020 (Denison, S., Mack, M., Xu, Y. & Armstrong, B. C.) (2020). at <https://cogsci.mindmodeling.org/2020/papers/0761/index.html>
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).PDF icon CBMM_Memo_108.pdf (1015.14 KB)PDF icon Better bound (without inequalities!) (1.03 MB)
Mhaskar, H. & Poggio, T. Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).PDF icon 1534-0392_2020_8_4085.pdf (514.57 KB)
Freiwald, W. A. Gross means Great. Progress in Neurobiology 195, 101924 (2020).
Marques, T., Schrimpf, M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex tend to better explain higher level visual cortical responses . COSYNE (2020).
Bill, J., Pailian, H., Gershman, S. J. & Drugowitsch, J. Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences 117, 24581 - 24589 (2020).
Deza, A., Liao, Q., Banburski, A. & Poggio, T. Hierarchically Local Tasks and Deep Convolutional Networks. (2020).PDF icon CBMM_Memo_109.pdf (2.12 MB)
Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, (2020).
Poggio, T., Liao, Q. & Xu, M. Implicit dynamic regularization in deep networks. (2020).PDF icon v1.2 (2.29 MB)PDF icon v.59 Update on rank (2.43 MB)
Vinken, K., Boix, X. & Kreiman, G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. Science Advances 6, eabd4205 (2020).PDF icon gk7967.pdf (3.07 MB)

Pages