Export 897 results:
Filters: Filter is   [Clear All Filters]
Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B. & O’Donnell, T. J. Synthesizing theories of human language with Bayesian program inductionAbstract. Nature Communications 13, (2022).PDF icon s41467-022-32012-w.pdf (2.19 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Xiao, Y. et al. Task-specific neural processes underlying conflict resolution during cognitive control. BioRxiv (2022). doi:10.1101/2022.01.16.476535 PDF icon 2022.01.16.476535v1.full_.pdf (22.96 MB)
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Woo, B. M. & Spelke, E. S. Toddlers’ social evaluations of agents who act on false beliefs. Developmental Science 26, (2022).
Tazi, Y., Berger, M. & Freiwald, W. A. Towards an objective characterization of an individual's facial movements using Self-Supervised Person-Specific-Models. arXiv (2022). at <>
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022). doi:10.1109/ICRA46639.2022.9811928
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)PDF icon version 2 (3/22/2023) (1.33 MB)
Rangamani, A. & Xie, Y. Understanding the Role of Recurrent Connections in Assembly Calculus. (2022).PDF icon CBMM-Memo-137.pdf (1.49 MB)
Kamps, F. S., Richardson, H., N. Murty, A. Ratan, Kanwisher, N. & Saxe, R. Using child‐friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years. Human Brain Mapping (2022). doi:10.1002/hbm.25815
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Izard, V., Pica, P. & Spelke, E. S. Visual foundations of Euclidean geometry. Cognitive Psychology 136, 101494 (2022).
Bill, J., Gershman, S. J. & Drugowitsch, J. Visual motion perception as online hierarchical inference. Nature Communications 13, (2022).
Spelke, E. S. What Babies KnowAbstractCore KnowledgeAbstract. 190 - C5.T1 (Oxford University PressNew York, 2022). doi:10.1093/oso/9780190618247.001.000110.1093/oso/9780190618247.003.0005
Gjata, N. N., Ullman, T. D., Spelke, E. S. & Liu, S. What Could Go Wrong: Adults and Children Calibrate Predictions and Explanations of Others' Actions Based on Relative Reward and Danger. Cognitive Science 46, (2022).
Madan, S. et al. When and how convolutional neural networks generalize to out-of-distribution category–viewpoint combinations. Nature Machine Intelligence 4, 146 - 153 (2022).
Shu, T. et al. AGENT: A Benchmark for Core Psychological Reasoning. Proceedings of the 38th International Conference on Machine Learning (2021).
Zhang, M. & Kreiman, G. Beauty is in the eye of the machine. Nature Human Behaviour 5, 675 - 676 (2021).
Kreiman, G. Biological and Computer Vision. (Cambridge University Press, 2021). doi:10.1017/9781108649995
Traer, J., Norman-Haignere, S. & McDermott, J. H. Causal inference in environmental sound recognition. Cognition (2021). doi:10.1016/j.cognition.2021.104627
Cohen, M. A., Ostrand, C., Frontero, N. & Pham, P. - N. Characterizing a snapshot of perceptual experience. Journal of Experimental Psychology: General (2021). doi:10.1037/xge0000864
Kar, K., Schrimpf, M., Schmidt, K. & DiCarlo, J. J. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision 21, (2021).
Zheng, J. et al. Cognitive boundary signals in the human medial temporal lobe shape episodic memory representation. bioRxiv (2021).
Baidya, A., Dapello, J., DiCarlo, J. J. & Marques, T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. NeurIPS 2021 (2021). at <>