Publication
Found 283 results
Author Title Type [ Year
] Filters: First Letter Of Last Name is P [Clear All Filters]
Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. (2021).
CBMM-Memo-128.pdf (2.91 MB)
Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. Interspeech 2021 (2021). doi:10.21437/Interspeech.2021
An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121, 229 - 241 (2020).
Biologically Inspired Mechanisms for Adversarial Robustness. (2020).
CBMM_Memo_110.pdf (3.14 MB)
Biologically Inspired Mechanisms for Adversarial Robustness. (2020).
CBMM_Memo_110.pdf (3.14 MB)
On the Capability of Neural Networks to Generalize to Unseen Category-Pose Combinations. (2020).
CBMM-Memo-111.pdf (9.76 MB)
Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).
s41467-020-14663-9.pdf (431.68 KB)
CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>
Foveated_Drone_SVRHM_2020.pdf (13.44 MB)
v1 (12/15/2020) (14.7 MB)
Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).
CBMM Memo 113.pdf (1019.64 KB)
Explicit regularization and implicit bias in deep network classifiers trained with the square loss. arXiv (2020). at <https://arxiv.org/abs/2101.00072>
For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).
CBMM_Memo_108.pdf (1015.14 KB)
Better bound (without inequalities!) (1.03 MB)
Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).
1534-0392_2020_8_4085.pdf (514.57 KB)
Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences 117, 24581 - 24589 (2020).
Hierarchically Local Tasks and Deep Convolutional Networks. (2020).
CBMM_Memo_109.pdf (2.12 MB)
Implicit dynamic regularization in deep networks. (2020).
v1.2 (2.29 MB)
v.59 Update on rank (2.43 MB)
Loss landscape: SGD has a better view. (2020).
CBMM-Memo-107.pdf (1.03 MB)
Typos and small edits, ver11 (955.08 KB)
Small edits, corrected Hessian for spurious case (337.19 KB)
An Overview of Some Issues in the Theory of Deep Networks. IEEJ Transactions on Electrical and Electronic Engineering 15, 1560 - 1571 (2020).
Response patterns in the developing social brain are organized by social and emotion features and disrupted in children diagnosed with autism spectrum disorder. Cortex 125, 12 - 29 (2020).
Scale and translation-invariance for novel objects in human vision. Scientific Reports 10, (2020).
s41598-019-57261-6.pdf (1.46 MB)
The speed of human social interaction perception. NeuroImage 116844 (2020). doi:10.1016/j.neuroimage.2020.116844
Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).
Original file (584.54 KB)
Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD. (905.29 KB)
Edited Appendix on SGD. (909.19 KB)
Deleted Appendix. Corrected typos etc (880.27 KB)
Added result about square loss and min norm (898.03 KB)
Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117
PNASlast.pdf (915.3 KB)
An analysis of training and generalization errors in shallow and deep networks. (2019).
CBMM-Memo-098.pdf (687.36 KB)
CBMM Memo 098 v4 (08/2019) (2.63 MB)