Publication

Export 154 results:
Filters: Author is Tomaso A. Poggio  [Clear All Filters]
2023
Poggio, T. & Magrini, M. Cervelli menti algoritmi. 272 (Sperling & Kupfer, 2023). at <https://www.sperling.it/libri/cervelli-menti-algoritmi-marco-magrini>
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
Rangamani, A., Lindegaard, M., Galanti, T. & Poggio, T. Feature learning in deep classifiers through Intermediate Neural Collapse. (2023).PDF icon Feature_Learning_memo.pdf (2.16 MB)
Rangamani, A., Rosasco, L. & Poggio, T. For interpolating kernel machines, minimizing the norm of the ERM solution maximizes stability. Analysis and Applications 21, 193 - 215 (2023).
Gan, Y. & Poggio, T. A Homogeneous Transformer Architecture. (2023).PDF icon CBMM Memo 143 v2 (1.1 MB)
Singhal, U. et al. How to Guess a Gradient. arXiv (2023). at <https://arxiv.org/abs/2312.04709>
Xu, M. et al. The Janus effects of SGD vs GD: high noise and low rank. (2023).PDF icon Updated with appendix showing empirically that the main results extend to deep nonlinear networks (2.95 MB)PDF icon Small updates...typos... (616.82 KB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/8493e190ff1bbe3837eca821190b61ff-Paper-Conference.pdf>PDF icon NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Han, Y., Poggio, T. & Cheung, B. System Identification of Neural Systems: If We Got It Right, Would We Know?. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 12430-12444 (2023).PDF icon han23d.pdf (797.48 KB)

Pages