Publication
Export 155 results:
Filters: Author is Tomaso Poggio [Clear All Filters]
Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss. (2021).
v1.0 (4.61 MB)
v1.4corrections to generalization section (5.85 MB)
v1.7Small edits (22.65 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
The Effects of Image Distribution and Task on Adversarial Robustness. (2021).
CBMM_Memo_116.pdf (5.44 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Evaluating the Adversarial Robustness of a Foveated Texture Transform Module in a CNN. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/Schedule?showEvent=21868>
From Associative Memories to Powerful Machines. (2021).
v1.0 (1.01 MB)
v1.3Section added August 6 on self attention (3.9 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
From Marr’s Vision to the Problem of Human Intelligence. (2021).
CBMM-Memo-118.pdf (362.19 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121, 229 - 241 (2020).
Biologically Inspired Mechanisms for Adversarial Robustness. (2020).
CBMM_Memo_110.pdf (3.14 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Complexity Control by Gradient Descent in Deep Networks. Nature Communications 11, (2020).
s41467-020-14663-9.pdf (431.68 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CUDA-Optimized real-time rendering of a Foveated Visual System. Shared Visual Representations in Human and Machine Intelligence (SVRHM) workshop at NeurIPS 2020 (2020). at <https://arxiv.org/abs/2012.08655>
Foveated_Drone_SVRHM_2020.pdf (13.44 MB)
v1 (12/15/2020) (14.7 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).
CBMM Memo 113.pdf (1019.64 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Explicit regularization and implicit bias in deep network classifiers trained with the square loss. arXiv (2020). at <https://arxiv.org/abs/2101.00072>
For interpolating kernel machines, the minimum norm ERM solution is the most stable. (2020).
CBMM_Memo_108.pdf (1015.14 KB)
Better bound (without inequalities!) (1.03 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Function approximation by deep networks. Communications on Pure & Applied Analysis 19, 4085 - 4095 (2020).
1534-0392_2020_8_4085.pdf (514.57 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Hierarchically Local Tasks and Deep Convolutional Networks. (2020).
CBMM_Memo_109.pdf (2.12 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Implicit dynamic regularization in deep networks. (2020).
v1.2 (2.29 MB)
v.59 Update on rank (2.43 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Loss landscape: SGD has a better view. (2020).
CBMM-Memo-107.pdf (1.03 MB)
Typos and small edits, ver11 (955.08 KB)
Small edits, corrected Hessian for spurious case (337.19 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
An Overview of Some Issues in the Theory of Deep Networks. IEEJ Transactions on Electrical and Electronic Engineering 15, 1560 - 1571 (2020).
Scale and translation-invariance for novel objects in human vision. Scientific Reports 10, (2020).
s41598-019-57261-6.pdf (1.46 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).
Original file (584.54 KB)
Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD. (905.29 KB)
Edited Appendix on SGD. (909.19 KB)
Deleted Appendix. Corrected typos etc (880.27 KB)
Added result about square loss and min norm (898.03 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Theoretical issues in deep networks. Proceedings of the National Academy of Sciences 201907369 (2020). doi:10.1073/pnas.1907369117
PNASlast.pdf (915.3 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
An analysis of training and generalization errors in shallow and deep networks. (2019).
CBMM-Memo-098.pdf (687.36 KB)
CBMM Memo 098 v4 (08/2019) (2.63 MB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Biologically-plausible learning algorithms can scale to large datasets. International Conference on Learning Representations, (ICLR 2019) (2019).
gk7779.pdf (721.53 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Deep Recurrent Architectures for Seismic Tomography. 81st EAGE Conference and Exhibition 2019 (2019).
Double descent in the condition number. (2019).
Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)
Incorporated footnote in text plus other edits (854.05 KB)
Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)
correcting a bad typo (261.24 KB)
Deleted plot of condition number of kernel matrix: we cannot get a double descent curve (769.32 KB)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).