Publication

Export 75 results:
Filters: Author is Tomaso Poggio  [Clear All Filters]
2017
Volokitin, A., Roig, G. & Poggio, T. Do Deep Neural Networks Suffer from Crowding?. (2017).PDF icon CBMM-Memo-069.pdf (6.47 MB)
Roig, G., Chen, F., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks for Modeling Human Vision. Vision Sciences Society (2017).
Chen, F., Roig, G., Isik, L., Boix, X. & Poggio, T. Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15360>PDF icon paper.pdf (963.87 KB)
Han, Y., Roig, G., Geiger, G. & Poggio, T. On the Human Visual System Invariance to Translation and Scale. Vision Sciences Society (2017).
Han, Y., Roig, G., Geiger, G. & Poggio, T. Is the Human Visual System Invariant to Translation and Scale?. AAAI Spring Symposium Series, Science of Intelligence (2017).
Mutch, J. et al. Computational and Cognitive Neuroscience of Vision 85-104 (Springer, 2017).
Tacchetti, A., Voinea, S., Evangelopoulos, G. & Poggio, T. Representation Learning from Orbit Sets for One-shot Classification. AAAI Spring Symposium Series, Science of Intelligence (2017). at <https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15357>
Anselmi, F., Evangelopoulos, G., Rosasco, L. & Poggio, T. Symmetry Regularization. (2017).PDF icon CBMM-Memo-063.pdf (6.1 MB)
Poggio, T. & Liao, Q. Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).PDF icon CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
Zhang, C. et al. Theory of Deep Learning III: Generalization Properties of SGD. (2017).PDF icon CBMM Memo 067 v2 (revised 7/19/2017) (5.88 MB)PDF icon CBMM Memo 067 v3 (revised 9/15/2017) (5.89 MB)
Leibo, J. Z., Liao, Q., Anselmi, F., Freiwald, W. A. & Poggio, T. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation. Current Biology 27, 1-6 (2017).
Mhaskar, H., Liao, Q. & Poggio, T. When and Why Are Deep Networks Better Than Shallow Ones?. AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence (2017).
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing 1-17 (2017). doi:10.1007/s11633-017-1054-2PDF icon art%3A10.1007%2Fs11633-017-1054-2.pdf (1.68 MB)
2016
Liao, Q. & Poggio, T. Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex. (2016).PDF icon CBMM Memo No. 047 (1.29 MB)
Poggio, T. Deep Leaning: Mathematics and Neuroscience. A Sponsored Supplement to Science Brain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9-12 (2016).
Poggio, T. Deep Learning: mathematics and neuroscience. (2016).PDF icon Deep Learning- mathematics and neuroscience.pdf (1.25 MB)
Mhaskar, H. & Poggio, T. Deep vs. shallow networks : An approximation theory perspective. (2016). doi:http://dx.doi.org/10.1142/S0219530516400042PDF icon Original submission, visit the DOI link above for the updated version (960.27 KB)
Isik, L., Tacchetti, A. & Poggio, T. Fast, invariant representation for human action in the visual system. (2016). at <http://arxiv.org/abs/1601.01358>PDF icon CBMM Memo 042 (3.03 MB)
Luo, Y., Boix, X., Roig, G., Poggio, T. & Zhao, Q. Foveation-based Mechanisms Alleviate Adversarial Examples. (2016).PDF icon cbmm_memo_044.pdf (11.48 MB)
Morère, O. et al. Group Invariant Deep Representations for Image Instance Retrieval. (2016).PDF icon CBMM-Memo-043.pdf (2.66 MB)
Nickel, M., Rosasco, L. & Poggio, T. Holographic Embeddings of Knowledge Graphs. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016).PDF icon 1510.04935v2.pdf (360.65 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (Association for the Advancement of Artificial Intelligence, 2016).PDF icon liao-leibo-poggio.pdf (191.91 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. How Important Is Weight Symmetry in Backpropagation?. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (2016). at <https://cbmm.mit.edu/sites/default/files/publications/liao-leibo-poggio.pdf>
Bach, F. & Poggio, T. Introduction Special issue: Deep learning. Information and Inference 5, 103-104 (2016).
Anselmi, F., Rosasco, L. & Poggio, T. On invariance and selectivity in representation learning. Information and Inference: A Journal of the IMA iaw009 (2016). doi:10.1093/imaiai/iaw009PDF icon imaiai.iaw009.full_.pdf (267.87 KB)

Pages